industry news
Subscribe Now

Microchip Reveals Software Development Kit and Neural Network IP for Easily Creating Low-Power FPGA Smart Embedded Vision Solutions

Microchip’s VectorBlox SDK and IP offers an easy way for software developers to program a trained neural network without prior FPGA expertise

CHANDLER, Ariz., May 18, 2020 (GLOBE NEWSWIRE) — With the rise of Artificial Intelligence (AI), Machine Learning (ML) and the Internet of Things (IoT), applications are moving to the network edge where data is collected, requiring power-efficient solutions to deliver more computational performance in ever smaller, thermally constrained form factors. Through its Smart Embedded Vision initiative, Microchip Technology Inc. (Nasdaq: MCHP) is meeting the growing need for power-efficient inferencing in edge applications by making it easier for software developers to implement their algorithms in PolarFire® field-programmable gate arrays (FPGAs). As a significant addition to the solutions portfolio in this segment, Microchip’s VectorBlox Accelerator Software Development Kit (SDK) helps developers take advantage of Microchip’s PolarFire FPGAs for creating low-power, flexible overlay-based neural network applications without learning an FPGA tool flow.

FPGAs are ideal for edge AI applications, such as inferencing in power-constrained compute environments, because they can perform more giga operations per second (GOPS) with greater power efficiency than a central processing unit (CPU) or graphics processing unit (GPU), but they require specialized hardware design skills. Microchip’s VectorBlox Accelerator SDK is designed to enable developers to code in C/C++ and program power-efficient neural networks without prior FPGA design experience.

The highly flexible tool kit can execute models in TensorFlow and the open neural network exchange (ONNX) format which offers the widest framework interoperability. ONNX supports many frameworks such as Caffe2, MXNet, PyTorch, and MATLAB®. Unlike alternative FPGA solutions, Microchip’s VectorBlox Accelerator SDK is supported on Linux® and Windows® operating systems, and it also includes a bit accurate simulator which provides the user the opportunity to validate the accuracy of the hardware while in the software environment. The neural network IP included with the kit also supports the ability to load different network models at run time.

“In order for software developers to benefit from the power efficiencies of FPGAs, we need to remove the impediment of them having to learn new FPGA architectures and proprietary tool flows, while giving them the flexibility to port multi-framework and multi-network solutions,” said Bruce Weyer, vice president of the Field Programmable Gate Array business unit at Microchip. “Microchip’s VectorBlox Accelerator SDK and neural network IP core will give both software and hardware developers a way to implement an extremely flexible overlay convolutional neural network architecture on PolarFire FPGAs, from which they can then more easily construct and implement their AI-enabled edge systems that have best-in-class form factors, thermals and power characteristics.”

For inferencing at the edge, PolarFire FPGAs deliver up to 50 percent lower total power than competing devices, while also offering 25 percent higher-capacity math blocks that can deliver up to 1.5 tera operations per second (TOPS). By using FPGAs, developers also have greater opportunities for customization and differentiation through the devices’ inherent upgradability and ability to integrate functions on a single chip. The PolarFire FPGA neural network IP is available in a range of sizes to match the performance, power, and package size tradeoffs for the application, enabling customers to implement their solutions in package sizes as small as 11 × 11 mm.

Microchip’s Smart Embedded Vision initiative was launched last July to provide hardware and software developers with tools, intellectual property (IP) cores, and boards for meeting the thermally constrained and small-form-factor requirements of edge applications. Because PolarFire FPGAs deliver lower power compared to other solutions, customers can eliminate the need for fans in their enclosures. PolarFire FPGAs also offer more functional integration for a customer’s design. For example, in applications such as a smart camera, PolarFire FPGAs can integrate the image signal pipeline which includes the sensor interface, DDR controller, image signal processing (ISP) IP and network interfaces, all while integrating the machine learning inference.

Availability

Microchip’s VectorBlox Accelerator SDK is scheduled to be available in the third quarter of 2020, starting with an Early Access Program in June. PolarFire FPGAs are in production today. For more information, visit the Smart Embedded Vision web page or contact vectorblox@microchip.com.

Resources

High-res images available through Flickr or editorial contact (feel free to publish):

About Microchip Technology
Microchip Technology Inc. is a leading provider of smart, connected and secure embedded control solutions. Its easy-to-use development tools and comprehensive product portfolio enable customers to create optimal designs which reduce risk while lowering total system cost and time to market. The company’s solutions serve more than 120,000 customers across the industrial, automotive, consumer, aerospace and defense, communications and computing markets. Headquartered in Chandler, Arizona, Microchip offers outstanding technical support along with dependable delivery and quality. For more information, visit the Microchip website at www.microchip.com.

Leave a Reply

featured blogs
Oct 23, 2020
Processing a component onto a PCB used to be fairly straightforward. Through hole products, a single or double row surface mount with a larger center-line rarely offer unique challenges obtaining a proper solder joint. However, as electronics continue to get smaller and conne...
Oct 23, 2020
[From the last episode: We noted that some inventions, like in-memory compute, aren'€™t intuitive, being driven instead by the math.] We have one more addition to add to our in-memory compute system. Remember that, when we use a regular memory, what goes in is an address '...
Oct 23, 2020
Any suggestions for a 4x4 keypad in which the keys aren'€™t wobbly and you don'€™t have to strike a key dead center for it to make contact?...
Oct 23, 2020
At 11:10am Korean time this morning, Cadence's Elias Fallon delivered one of the keynotes at ISOCC (International System On Chip Conference). It was titled EDA and Machine Learning: The Next Leap... [[ Click on the title to access the full blog on the Cadence Community ...

featured video

Demo: Inuitive NU4000 SoC with ARC EV Processor Running SLAM and CNN

Sponsored by Synopsys

See Inuitive’s NU4000 3D imaging and vision processor in action. The SoC supports high-quality 3D depth processor engine, SLAM accelerators, computer vision, and deep learning by integrating Synopsys ARC EV processor. In this demo, the NU4000 demonstrates simultaneous 3D sensing, SLAM and CNN functionality by mapping out its environment and localizing the sensor while identifying the objects within it. For more information, visit inuitive-tech.com.

Click here for more information about DesignWare ARC EV Processors for Embedded Vision

featured paper

An engineer’s guide to autonomous and collaborative industrial robots

Sponsored by Texas Instruments

As robots are becoming more commonplace in factories, it is important that they become more intelligent, autonomous, safer and efficient. All of this is enabled with precise motor control, advanced sensing technologies and processing at the edge, all with robust real-time communication. In our e-book, an engineer’s guide to industrial robots, we take an in-depth look at the key technologies used in various robotic applications.

Click here to download the e-book

Featured Chalk Talk

Nano Pulse Control Clears Issues in the Automotive and Industrial Markets

Sponsored by Mouser Electronics and ROHM Semiconductor

In EV and industrial applications, converting from high voltages on the power side to low voltages on the electronics side poses a big challenge. In order to convert big voltage drops efficiently, you need very narrow pulse widths. In this episode of Chalk Talk, Amelia Dalton chats with Satya Dixit from ROHM about new Nano Pulse Control technology that changes the game in DC to DC conversion.

More information about ROHM Semiconductor BD9V10xMUF Buck Converters