industry news
Subscribe Now

Imec’s SWEET study Collects World’s Largest Dataset on Stress Detection

Largest Study of its Kind Harnessed Wearables to Uncover Links Between Stress and Physiological Factors

LEUVEN, Belgium—Jan. 9, 2018 – Imec, the world-leading research and innovation hub in nanoelectronics and digital technologies, announced today that it has collected the largest multisensor dataset worldwide on stress detection. Imec’s Stress in the Work Environment (SWEET) study captured data from more than 1,000 people and is the first large-scale study that used clinical-grade wearables to establish the link between mental stress and physiological symptoms in daily life.

Work-related stress is common in modern-day society; however, while everyone experiences occasional stress, chronic stress can have a significant and long-term impact on emotional and physical well-being, and it can cause depression, anxiety disorders and professional burnout. This is one of the main reasons the sale of CBD vape cartridges are on the rise. According to the American Institute of Stress, stress is estimated to cost the US economy approximately 300 billion dollars a year (due to absenteeism and productivity loss). In Europe, the annual cost of stress is estimated at 514 billion euros in productivity loss and 63 billion euros in direct healthcare costs.   Currently, the most widespread method to detect stress is by the means of questionnaires. However, these questionnaires are subjective, time-consuming, and are conducted on a spot-check basis only. To lower the risk of reaching the threshold of chronic stress, it is important to identify stress signals immediately and to provide personalized, just-in-time feedback so that the individual can employ correction strategies to decrease his/her stress level. Imec’s wearable technology in combination with advanced algorithms to analyze the data collected can play an important role in this.

Imec’s large-scale research, the SWEET study, tracked more than 1,000 participants. First, participants’ baseline stress levels were determined via validated psychological questionnaires. They were then provided a wrist band and a wireless ECG patch, which they wore continuously for five days. The ECG patch monitored their heart rate and heart rate variability along with acceleration (movement). The wrist band, fortified with advanced algorithms, measured skin conductance, skin temperature and acceleration (movement). Physiological stress symptoms were then supplemented by contextual data collected through the participants’ smartphones, such as GPS data, phone activity and noise level, and self-reported information.
Participants were queried 12 times a day via a smartphone app to evaluate their self-reported stress levels and to answer multiple-choice questions about their daily activities, food and drink intake, sleep quality, and digestive processes. In addition, they also completed the Montreal Imaging Stress Task, a 20 minute-stress test that allowed the researchers to calibrate participants’ stress levels with their personal physiological symptoms.

“Our SWEET study is unique as it is the first large-scale study to use multiple wearables to establish the link between physiological stress symptoms and self-reported stress in real-life. Utilizing wearables in this research generated complex and sophisticated data sets, taking real-life contextual factors into account that helped us better understand periods of stress and its indicators,” explained Elena Smets, imec.ichange researcher and PhD student at KULeuven. The first results, for instance, already indicated that participants’ average heart rate variability correlated with their perceived stress levels.

“This study is part of imec.ichange, imec’s research program that aims to stimulate and encourage healthier lifestyles by using wearable technology to give personalized and user-friendly feedback,” stated Chris Van Hoof, senior director connected health solutions. “The insights from the SWEET study, are an important starting point to develop this kind of technology for stress management. By providing personalized, context-enriched feedback via wearables, it will be possible to help people maintain a more balanced lifestyle, thereby reducing the risk of stress-related problems such as burnouts. Although the primary focus is on prevention, an adapted version of this technology could also be used to support patients recovering from a mental illness, i.e. by providing their therapists with objective information about patients’ stress symptoms in daily life.”

About the imec.ichange program
The imec.ichange  program aims to develop a digital coaching tools for a healthier life, based on sensor technology and data science. By combining smart algorithms and contextual data, wearables and health apps can give more user-friendly, personalized, just-in-time feedback. The long-term goal is to combine this form of digital phenotyping with other aspects of the human fenotype and pave the way towards disease interception.
Imec welcomes companies to join our imec.ichange program to create an ecosystem of partners, including partners with medical expertise (hospitals, doctors, specialists, etc.), pharma, and companies specialized in hardware, data analysis, coaching, etc., to bring together all the different areas of expertise needed to validate diverse applications and create robust solutions.

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 24, 2024
Learn about maskless electron beam lithography and see how Multibeam's industry-first e-beam semiconductor lithography system leverages Synopsys software.The post Synopsys and Multibeam Accelerate Innovation with First Production-Ready E-Beam Lithography System appeared fir...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Connectivity Solutions for Smart Trailers
Smart trailers can now be equipped with a wide variety of interconnection systems including wire-to-wire, wire-to-board, and high-speed data solutions. In this episode of Chalk Talk, Amelia Dalton and Blaine Dudley from TE Connectivity explore the evolution of smart trailer technology, the different applications within a trailer where connectivity would be valuable, and how TE Connectivity is encouraging innovation in the world of smart trailer technology.
Oct 6, 2023
25,848 views