industry news
Subscribe Now

Imec’s new direct-digitization readout design enables small, low-noise, low-power neural interfaces

LEUVEN (Belgium), JUNE 15, 2022— This week, at the 2022 IEEE VLSI Symposium on Technology and Circuits, imec, a world-leading research and innovation center in nanoelectronics and digital technologies, presents a scalable neural readout microchip featuring one of the world’s smallest recording channels for the simultaneous acquisition of local field potentials and action potentials in neurophysiology experiments. The chip is based on a novel AC-coupled 1st order delta-delta-sigma (ΔΔΣ) architecture that enables the conversion to the digital domain very close to the weak analog signal source. This ultra-small direct-digitization channel holds the promise for even higher density neural recording tools than those existing today. 

Low power and small area become crucial IC design challenges for the development of high-channel-count neural interfaces. Recently, several innovative readouts architectures have been investigated to meet these demands, while still trying to maintain good performance in other metrics such as noise, electrode DC offset cancellation and input range. However, a trade-off between all these metrics is not easy to achieve. Direct-digitization front-ends that convert the signals from the analog to the digital domain close to the signal source, have shown great potential to dramatically reduce the area, but they can still consume high power or exhibit limited bandwidth and/or electrode DC offset cancellation. 

Imec now presents a digitally-intensive neural recording IC that achieves noise, power and area performances comparable to or better than the current state-of-the-art Neuropixels designs, while at the same time increasing the dynamic range and electrode DC offset tolerance via an AC-coupled ΔΔΣ modulator. “Our design succeeded in combining AC coupling and direct digitization to achieve rail-to-rail DC offset cancellation and a higher input range (43 mVpp) than other AC-coupled designs. This is essential to prevent saturation of the recording channels and tolerate possible movement/stimulation artifacts. The AC-coupled input stage further reduces the power consumption (total per channel of 8.34 μW) since only AC signals are digitized,” explains Carolina Mora Lopez, team leader of the Circuits for Neural Interfaces Team, imec. 

This specific ΔΔΣ architecture enables the implementation of a large part of the functionality – e.g.  the anti-aliasing filter – in the digital domain. Therefore, it is possible to significantly shrink the total channel area (0.005 mm2) and improve the signal quality by leveraging the advantages of a highly-scaled technology node (22nm FD-SOI). “This scalable digitally-intensive design ensures a small footprint and low-power IC with good performance for the concurrent acquisition of neural signals. It’s opening the way towards even smaller probes with higher electrode densities that would drive neuroscientific research forward,” concludes Carolina Mora Lopez.

 About imec

Imec is a world-leading research and innovation center in nanoelectronics and digital technologies. Imec leverages its state-of-the-art R&D infrastructure and its team of more than 5,000 employees and top researchers, for R&D in advanced semiconductor and system scaling, silicon photonics, artificial intelligence, beyond 5G communications and sensing technologies, and in application domains such as health and life sciences, mobility, industry 4.0, agrofood, smart cities, sustainable energy, education, … Imec unites world-industry leaders across the semiconductor value chain, Flanders-based and international tech, pharma, medical and ICT companies, start-ups, and academia and knowledge centers. Imec is headquartered in Leuven (Belgium), and has research sites across Belgium, in the Netherlands and the USA, and offices in China, India, Taiwan and Japan. In 2021, imec’s revenue (P&L) totaled 732 million euro. 

Further information on imec can be found at www.imec-int.com.

Leave a Reply

featured blogs
Jul 1, 2022
We all look for 100% perfection and want to turn our dreams (expectations) into reality as far as we can. Are you also looking for a magic wand to turn expectation into reality? The story applies to... ...
Jun 30, 2022
Learn how AI-powered cameras and neural network image processing enable everything from smartphone portraits to machine vision and automotive safety features. The post How AI Helps Cameras See More Clearly appeared first on From Silicon To Software....
Jun 28, 2022
Watching this video caused me to wander off into the weeds looking at a weird and wonderful collection of wheeled implementations....

featured video

Synopsys PCIe 6.0 IP TX and RX Successful Interoperability with Keysight

Sponsored by Synopsys

This DesignCon 2022 video features Synopsys PHY IP for PCIe 6.0 showing wide open PAM-4 eyes, good jitter breakdown decomposition on the Keysight oscilloscope, excellent receiver performance, and simulation-to-silicon correlation.

Click here for more information

featured paper

An Engineer's Guide to Designing with Precision Amplifiers

Sponsored by Texas Instruments

Engineers face many challenges when designing analog circuits. This e-book covers common topics related to these products, including operational amplifier (op amp) specifications and printed circuit board layout issues, instrumentation amplifier linear operating regions, and electrical overstress.

Click to read more

featured chalk talk

Faster, More Predictable Path to Multi-Chiplet Design Closure

Sponsored by Cadence Design Systems

The challenges for 3D IC design are greater than standard chip design - but they are not insurmountable. In this episode of Chalk Talk, Amelia Dalton chats with Vinay Patwardhan from Cadence Design Systems about the variety of challenges faced by 3D IC designers today and how Cadence’s integrated, high-capacity Integrity 3D IC Platform, with its 3D design planning and implementation cockpit, flow manager and co-design capabilities will not only help you with your next 3D IC design.

Click here for more information about Integrity 3D-IC Platform from Cadence Design Systems