industry news
Subscribe Now

Imec Presents Complementary FET (CFET) as Scaling Contender for Nodes Beyond N3

LEUVEN (Belgium) – June 20, 2018 – At this week’s 2018 Symposia on VLSI Technology and Circuits, imec, the world-leading research and innovation hub in nanoelectronics and digital technology, will present a process flow for a complementary FET (CFET) device for nodes beyond N3. The proposed CFET can eventually outperform FinFETs and meet the N3 requirements for power and performance. It offers a potential area scaling of both standard cells (SDC) and memory SRAM cells by 50%.

The CFET is a further evolution of the vertically stacked gate all around nanowire transistor. Instead of stacking either n-type or p-type devices, it stacks both on top of each other. Imec’s proposed flow consists of stacking an n-type vertical sheet on a p-type fin. This choice exploits the FinFET process flow and benefits from the potential for strain engineering in the bottom pFET. Based on TCAD analysis, the proposed CFET can meet the N3 targets for power and performance, where it will outperform FinFETs. However, the dominant parasitic resistance of the deep vias needs to be reduced. This can be achieved by introducing advanced Middle of Line (MOL) contacts using e.g. ruthenium.

A design-technology co-optimization (DTCO) analysis reveals that the CFET device used in either an SDC or SRAM cell has the potential of 50% area reduction. The SDC area is mostly driven by accessing the transistor terminals. Consequently, the area gain using CFETs will not lie in the reduction of the active footprint, but rather in the considerable simplification of the transistor terminal access. By fully benefiting from the CFET architecture, it is possible to reduce the SDC to three routing tracks whereas the most advanced FinFET libraries today need six. For SRAM cells, the same area reduction is possible thanks to a new cross-coupling scheme that allows us to scale the cell height from T6 to T4.

“Given its excellent characteristics and scaling potential, the CFET device is an excellent contender for the new device architecture we need for nodes beyond N3, pushing the horizon for Moore’s Law farther out,” stated Julien Ryckaert, distinguished member of the technical staff at imec.”

These results will be presented on June 21 at the VLSI Technology Symposium, in session T13: FET performance and scaling. This research is performed in cooperation with equipment companies TEL Coventor and Lam Research and with imec’s key program partners including GlobalFoundries, Huawei, Intel, Micron, Qualcomm, Samsung, SK Hynix, Sony Semiconductor Solutions, TOSHIBA Memory, TSMC and Western Digital.

Leave a Reply

featured blogs
Apr 25, 2024
Cadence's seven -year partnership with'¯ Team4Tech '¯has given our employees unique opportunities to harness the power of technology and engage in a three -month philanthropic project to improve the livelihood of communities in need. In Fall 2023, this partnership allowed C...
Apr 24, 2024
Learn about maskless electron beam lithography and see how Multibeam's industry-first e-beam semiconductor lithography system leverages Synopsys software.The post Synopsys and Multibeam Accelerate Innovation with First Production-Ready E-Beam Lithography System appeared fir...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Reliable Connections for Rugged Handling
Sponsored by Mouser Electronics and Amphenol
Materials handling is a growing market for electronic designs. In this episode of Chalk Talk, Amelia Dalton and Jordan Grupe from Amphenol Industrial explore the variety of connectivity solutions that Amphenol Industrial offers for materials handling designs. They also examine the DIN charging solutions that Amphenol Industrial offers and the specific applications where these connectors can be a great fit.
Dec 5, 2023
18,656 views