industry news
Subscribe Now

Imec presents a manufacturable solution for field-free switching operation of Spin-Orbit Torque MRAM devices

KYOTO (Japan), JUNE 13, 2019 — This week, at the 2019 Symposia on VLSI Technology and Circuits (June 9-14, 2019), imec, a world-leading research and innovation hub in nanoelectronics and digital technologies, demonstrates field-free switching operation of spin-orbit torque MRAM (SOT-MRAM) devices – eliminating the need for an external magnetic field during write operation. The concept is manufacturing-friendly and does not compromise the reliability and sub-ns writing performance of the SOT-MRAM devices. The new field-free switching concept opens possibilities for the further development of MRAM-based technologies and non-volatile logic and memory applications (such as non-volatile latch circuits and flip-flops).

At the 2018 Symposia on VLSI Technology and Circuits, imec demonstrated the possibility of fabricating state-of-the-art SOT-MRAM devices on 300mm wafers using CMOS-compatible processes. These SOT-MRAM devices are a class of non-volatile memories that, thanks to a high endurance and sub-ns switching speed, can potentially replace fast L1/L2 SRAM cache memories. Writing of the memory elements is performed by injecting an in-plane current in a SOT layer that is adjacent to a magnetic tunnel junction (MTJ). During write operation, a small in-plane magnetic field is required to break symmetry and ensure deterministic magnetization switching. In today’s devices, this is done by applying an external magnetic field, which is recognized as a major hurdle for the practical use of these devices.

Imec has proposed a reliable ‘field-free’ switching concept that consists of embedding a ferromagnet in the hardmask that is used to shape the SOT layer. With this ferromagnet, a small homogeneous in-plane field is induced on the free layer of the magnetic tunnel junction. “A major advantage of imec’s integrated solution compared to other proposed solutions, is the ability to separately optimize the properties of the magnetic tunnel junction and the conditions of the field-free switching”, explains Gouri Sankar Kar, program director at imec. “This ‘de-coupling’ turns our field-free switching solution into a manufacturing friendly concept, which is a major requirement for the high-volume production of SOT-MRAM devices.”

With writing speeds below 300ps and unlimited endurance (up to 1011 cycles) – measured on multiple devices across a 300mm wafer – the approach is shown to be reliable while preserving the original sub-ns writing of the SOT-MRAM devices. “This confirms the potential of the SOT-MRAM devices for replacing SRAM at low-level caches”, adds Gouri Sankar Kar. “Moreover, the new field-free switching concept can potentially be applied to other MRAM-based technologies such as spin-transfer torque MRAM (STT-MRAM) and voltage-controlled magnetic anisotropy (VCMA), and opens doors to other non-volatile logic and memory applications such as non-volatile flip-flop and non-volatile latch circuits.” Future work will focus on further reducing the energy consumption of the SOT-MRAM devices by bringing down the switching current.

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 24, 2024
Learn about maskless electron beam lithography and see how Multibeam's industry-first e-beam semiconductor lithography system leverages Synopsys software.The post Synopsys and Multibeam Accelerate Innovation with First Production-Ready E-Beam Lithography System appeared fir...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Introduction to the i.MX 93 Applications Processor Family
Robust security, insured product longevity, and low power consumption are critical design considerations of edge computing applications. In this episode of Chalk Talk, Amelia Dalton chats with Srikanth Jagannathan from NXP about the benefits of the i.MX 93 application processor family from NXP can bring to your next edge computing application. They investigate the details of the edgelock secure enclave, the energy flex architecture and arm Cortex-A55 core of this solution, and how they can help you launch your next edge computing design.
Oct 23, 2023
24,241 views