industry news
Subscribe Now

Imec demonstrates manufacturability of state-of-the-art spin-orbit torque MRAM devices on 300mm Si wafers

LEUVEN (Belgium), June 18, 2018 – At this week’s 2018 Symposia on VLSI Technology and Circuits, imec, the world-leading research and innovation hub in nanoelectronics and digital technology, demonstrates for the first time the possibility to fabricate state-of-the-art spin-orbit torque MRAM (SOT-MRAM) devices on 300mm wafers using CMOS compatible processes. With an unlimited endurance (>5×1010), fast switching speed (210ps), and power consumption as low as 300pJ, the SOT-MRAM devices manufactured in a 300mm line achieve the same or better performance as lab devices. This next-generation MRAM technology targets replacement of L1/L2 SRAM cache memories in high-performance computing applications.

SOT-MRAM has recently emerged as a non-volatile memory technology that promises a high endurance and low-power, sub-ns switching speed. With these properties, it can potentially overcome the limitations of spin-transfer torque MRAM (STT-MRAM) for L1/L2 SRAM cache memory replacement. But so far, SOT-MRAM devices have only been demonstrated in the lab. Imec has now for the first time proven full-scale integration of SOT-MRAM device modules on 300mm wafers using CMOS-compatible processes.

At the core of the SOT-MRAM device is a magnetic tunnel junction in which a thin dielectric layer is sandwiched between a magnetic fixed layer and a magnetic free layer. Similar as for STT-MRAM operation, writing of the memory is performed by switching the magnetization of this free magnetic layer, by means of a current. In STT-MRAM, this current is injected perpendicularly into the magnetic tunnel junction, and the read and write operation is performed through the same path – challenging the reliability of the device. In an SOT-MRAM device, on the contrary, switching of the free magnetic layer is done by injecting an in-plane current in an adjacent SOT layer – typically made of a heavy metal. Because of the current injection geometry, the read and write path are de-coupled, significantly improving the device endurance and read stability.

Imec has compared SOT and STT switching behavior on one and the same device, fabricated on 300mm wafers. While switching speed during STT-MRAM operation was limited to 5ns, reliable switching down to 210ps was demonstrated during SOT-MRAM operation. The SOT-MRAM devices show unlimited endurance (>5×1010) and operation power as low as 300pJ. In these devices, the magnetic tunnel junction consists of a SOT/CoFeB/MgO/CoFeB/SAF perpendicularly magnetized stack, using beta-phase tungsten (W) for the SOT layer.

“STT-MRAM technology has a high potential to replace L3 cache memory in high-performance computing applications”, says Gouri Sankar Kar, Distinguished Member of Technical Staff at imec. “However, due to the challenging reliability and increased nergy at sub-ns switching speeds, they are unsuitable to replace the faster L1/L2 SRAM cache memories. SOT-MRAM technology will help us to expand MRAM operation into the SRAM application domain. By moving this next-generation MRAM technology out of the lab, we have now demonstrated the maturity of the technology.” Future work will focus on further reducing the energy  consumption, by bringing down current density and by demonstrating field-free switching operation.

These results will be presented at the VLSI Circuits Symposium on June 20 in the session C8 Emerging Memory. Imec’s research into advanced memory is performed in cooperation with imec’s key partners in its core CMOS programs including GlobalFoundries, Huawei, Micron, Qualcomm, Sony Semiconductor Solutions, TSMC and Western Digital.

Leave a Reply

featured blogs
Mar 4, 2024
The current level of computing power is unprecedented. It has led to the development of advanced computational techniques that enable us to simulate larger systems and predict complex phenomena with greater accuracy. However, the simulation of turbomachinery systems still pos...
Mar 1, 2024
Explore standards development and functional safety requirements with Jyotika Athavale, IEEE senior member and Senior Director of Silicon Lifecycle Management.The post Q&A With Jyotika Athavale, IEEE Champion, on Advancing Standards Development Worldwide appeared first ...
Feb 28, 2024
Would it be better to ride the railways on people-powered rail bikes, or travel to the edge of space in a luxury lounge hoisted by a gigantic balloon?...

featured video

Tackling Challenges in 3DHI Microelectronics for Aerospace, Government, and Defense

Sponsored by Synopsys

Aerospace, Government, and Defense industry experts discuss the complexities of 3DHI for technological, manufacturing, & economic intricacies, as well as security, reliability, and safety challenges & solutions. Explore DARPA’s NGMM plan for the 3DHI R&D ecosystem.

Learn more about Synopsys Aerospace and Government Solutions

featured paper

Reduce 3D IC design complexity with early package assembly verification

Sponsored by Siemens Digital Industries Software

Uncover the unique challenges, along with the latest Calibre verification solutions, for 3D IC design in this new technical paper. As 2.5D and 3D ICs redefine the possibilities of semiconductor design, discover how Siemens is leading the way in verifying complex multi-dimensional systems, while shifting verification left to do so earlier in the design process.

Click here to read more

featured chalk talk

Gas Monitoring and Metering with Sensirion SFC6000/SFM6000 Solutions
Sponsored by Mouser Electronics and Sensirion
In this episode of Chalk Talk, Amelia Dalton and Negar Rafiee Dolatabadi from Sensirion explore the benefits of Sensirion’s SFM6000 Flow Meter and SFC Flow Controller. They examine how these solutions can be used in a variety of applications and how you can get started using these technologies for your next design.
Jan 17, 2024
7,049 views