industry news
Subscribe Now

Imec demonstrates an ultra-sensitive, small optomechanical ultrasound sensor in silicon photonics

LEUVEN (Belgium), 19 March, 2021 Imec, a world-leading research and innovation hub in nanoelectronics and digital technologies, presents an optomechanical ultrasound sensor on a silicon photonic chip that has an unprecedented sensitivity due to an innovative optomechanical waveguide. Because of this high-sensitivity waveguide, the 20-µm small sensor has a detection limit two orders of magnitudes better than piezoelectric elements of identical size. The low detection limit of the sensor enables new clinical and biomedical applications of ultrasonic and photoacoustic imaging such as deep-tissue mammography and the study of vascularization or innervation of potential tumorous tissue. This sensor was presented in a paper, published in Nature Photonics earlier this month.

Tomographic ultrasonic and photoacoustic imaging build two- or three-dimensional images using an array of ultrasound sensors. State-of-the-art piezoelectric ultrasound sensors, however, have their limitations. First, the detection limit depends inversely on the size of the sensors which is a problem for high-resolution imaging with small acoustic wavelengths. High-resolution images require small piezo-electric sensors which intrinsically have a higher detection limit resulting in a noisy image. Second, piezoelectric sensors rely on their mechanical resonance to enhance signal amplitude. This means that they operate in a small range around the resonance frequency to avoid high detection limits. Finally, matrices of piezoelectric sensors require one wire for each sensor element, hampering e.g. catheter applications.

 “The sensor we have demonstrated will be a gamechanger for deep tissue imaging in otherwise non-transparent tissues such as skin or brain. For applications such as sub-cutaneous melanoma imaging or mammography, it enables a more detailed view of the tumor and vascularization around, aiding in a more detailed diagnosis,” says Xavier Rottenberg, fellow wave-based sensors and actuators at imec. 

Imec’s solution is based on a highly sensitive split-rib optomechanical waveguide fabricated using new CMOS-compatible processing. The sensitivity is two orders of magnitude larger than a state-of-the-art device. A low detection limit can improve the trade-off between imaging resolution and depth for ultrasound applications, and is crucial for photoacoustic imaging, where pressures are up to three orders of magnitude lower than in conventional ultrasound imaging techniques. Furthermore, it may enable low-pressure applications like through-skull functional brain imaging, which suffers from the strong ultrasound attenuation of bone.

Finally, a fine-pitched (30 µm) matrix of these tiny (20 µm) sensors can be easily integrated on-chip with photonic multiplexers. This opens the possibility of new applications such as miniaturized catheters because the sensor matrices require only few optical fibers to be connected instead of one electrical connection per element in the case of piezoelectric sensors.

 “The sensor technology forms the backbone of the photoacoustic roadmap developed within imec and is further tested at selected partner sites,” add Xavier Rottenberg.

About imec

Imec is a world-leading research and innovation hub in nanoelectronics and digital technologies. The combination of our widely acclaimed leadership in microchip technology and profound software and ICT expertise is what makes us unique. By leveraging our world-class infrastructure and local and global ecosystem of partners across a multitude of industries, we create groundbreaking innovation in application domains such as healthcare, smart cities and mobility, logistics and manufacturing, energy and education. 

As a trusted partner for companies, start-ups and universities we bring together more than 4,000 brilliant minds from almost 100 nationalities. Imec is headquartered in Leuven, Belgium and has distributed R&D groups at a number of Flemish universities, in the Netherlands, Taiwan, USA, and offices in China, India and Japan. In 2019, imec’s revenue (P&L) totaled 640 million euro. 

Further information on imec can be found at www.imec-int.com.

Leave a Reply

featured blogs
Apr 24, 2024
Diversity, equity, and inclusion (DEI) are not just words but values that are exemplified through our culture at Cadence. In the DEI@Cadence blog series, you'll find a community where employees share their perspectives and experiences. By providing a glimpse of their personal...
Apr 23, 2024
We explore Aerospace and Government (A&G) chip design and explain how Silicon Lifecycle Management (SLM) ensures semiconductor reliability for A&G applications.The post SLM Solutions for Mission-Critical Aerospace and Government Chip Designs appeared first on Chip ...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Advanced Gate Drive for Motor Control
Sponsored by Infineon
Passing EMC testing, reducing power dissipation, and mitigating supply chain issues are crucial design concerns to keep in mind when it comes to motor control applications. In this episode of Chalk Talk, Amelia Dalton and Rick Browarski from Infineon explore the role that MOSFETs play in motor control design, the value that adaptive MOSFET control can have for motor control designs, and how Infineon can help you jump start your next motor control design.
Feb 6, 2024
10,961 views