industry news
Subscribe Now

Imec and Cadence Tape Out Industry’s First 3nm Test Chip

Extreme ultraviolet and 193 immersion lithography technology and Cadence digital tools used to design 3nm CPU core

LEUVEN, Belgium and SAN JOSE, Calif., February 28, 2018—The world-leading research and innovation hub in nanoelectronics and digital technologies, imec, and Cadence Design Systems, Inc. (NASDAQ: CDNS) today announced that its extensive, long-standing collaboration has resulted in the industry’s first 3nm test chip tapeout. The tapeout project, geared toward advancing 3nm chip design, was completed using extreme ultraviolet (EUV) and 193 immersion (193i) lithography-oriented design rules and the Cadence® Innovus™ Implementation System and Genus™ Synthesis Solution. Imec utilized a common industry 64-bit CPU for the test chip with a custom 3nm standard cell library and a TRIM metal flow, where the routing pitch was reduced to 21nm. Together, Cadence and imec have enabled the 3nm implementation flow to be fully validated in preparation for next-generation design innovation.

The Cadence Innovus Implementation System is a massively parallel physical implementation system that enables engineers to deliver high-quality designs with optimal power, performance and area (PPA) targets while accelerating time to market. The Cadence Genus Synthesis Solution is a next-generation, high-capacity RTL synthesis and physical synthesis engine that addresses the latest FinFET process node requirements, improving RTL designer productivity by up to 10X. For more information on the Innovus Implementation System, please visit www.cadence.com/go/innovus3nm, and to learn about the Genus Synthesis Solution, visit www.cadence.com/go/genus3nm.
For the project, EUV and 193i lithography rules were tested to provide the required resolution, while providing PPA comparison under two different patterning assumptions. For more information on EUV technology and 193i technology, visit https://www.imec-int.com/en/articles/imec-presents-patterning-solutions-for-n5-equivalent-metal-layers.

“As process dimensions reduce to the 3nm node, interconnect variation becomes much more significant,” said An Steegen, executive vice president for semiconductor technology and systems at imec. “Our work on the test chip has enabled interconnect variation to be measured and improved and the 3nm manufacturing process to be validated. Also, the Cadence digital solutions offered everything needed for this 3nm implementation. Due to Cadence’s well-integrated flow, the solutions were easy to use, which helped our engineering team stay productive when developing the 3nm rule set.”

“Imec’s state-of-the-art infrastructure enables pre-production innovations ahead of industry demands, making them a critical partner for us in the EDA industry,” said Dr. Chin-Chi Teng, corporate vice president and general manager in the Digital & Signoff Group at Cadence. “Expanding upon the work we did with imec in 2015 on the industry’s first 5nm tapeout, we are achieving new milestones together with this new 3nm tapeout, which can transform the future of mobile designs at advanced nodes.”

Leave a Reply

featured blogs
Jul 6, 2022
With the DRAM fabrication advancing from 1x to 1y to 1z and further to 1a, 1b and 1c nodes along with the DRAM device speeds going up to 8533 for Lpddr5/8800 for DDR5, Data integrity is becoming a... ...
Jul 6, 2022
Design Automation Conference (DAC) 2022 is almost here! Explore EDA and cloud design tools, autonomous systems, AI, and more with our experts in San Francisco. The post DAC 2022: A Glimpse into the World of Design Automation from the Cloud to Cryogenic Computing appeared fir...
Jun 28, 2022
Watching this video caused me to wander off into the weeds looking at a weird and wonderful collection of wheeled implementations....

featured video

Synopsys PCIe 6.0 IP TX and RX Successful Interoperability with Keysight

Sponsored by Synopsys

This DesignCon 2022 video features Synopsys PHY IP for PCIe 6.0 showing wide open PAM-4 eyes, good jitter breakdown decomposition on the Keysight oscilloscope, excellent receiver performance, and simulation-to-silicon correlation.

Click here for more information

featured paper

3 key considerations for your next-generation HMI design

Sponsored by Texas Instruments

Human-Machine Interface (HMI) designs are evolving. Learn about three key design considerations for next-generation HMI and find out how low-cost edge AI, power-efficient processing and advanced display capabilities are paving the way for new human-machine interfaces that are smart, easily deployable, and interactive.

Click to read more

featured chalk talk

Mission Critical Electrical Controls

Sponsored by Mouser Electronics and Littelfuse

If you are working on a mission-critical design, there is a very important list of requirements that you will need to consider for your electromechanical controls including how well they have been tested, availability of inventory, and the quality of the components. In this episode of Chalk Talk, Amelia Dalton chats with John Saathoff from Littelfuse electromechanical solutions offered by Hartland Controls, the benefits Hartland brings to the table when it comes to mission-critical designs, and how you can get started using Hartland Controls for your next design.

Click here for more information about Hartland Controls from Littelfuse