industry news
Subscribe Now

CEA-Leti Scientists Demonstrate CMOS Device Fabrication at 500°C, Paving the Way to High-Performance 3D Monolithic CMOS Integration

VLSI 2020 Paper Details First Proof of Integration of FDSOI CMOS Devices Processed at 500°C, for Further 3D Monolithic Integration

GRENOBLE, France – June 22, 2020 – In an FDSOI CMOS processing breakthrough, CEA-Leti scientists have pushed fabrication thermal-process boundaries down to 500°C for CMOS integration, while showing strong performance gains especially in P-type metal-oxide-semiconductor (PMOS) logic devices.

The 500°C threshold is important because in 3D monolithic technologies (also called 3D sequential), fabricating the upper-level transistors at higher temperatures than that can damage the metal interconnects and the silicide of the bottom-level transistors. Using CEA-Leti’s CoolCubeTM low-temperature process for top-level devices prevents deterioration of bottom-level transistors.

“Integration of CMOS devices is now possible at 500°C on top,” said CEA-Leti scientist Claire Fenouillet-Beranger. “This proof of concept gives more and more credibility to this sequential integration for applications requiring high density.”

Fenouillet-Beranger is an author of a paper, “First demonstration of low temperature (≤500°C) CMOS devices featuring functional RO and SRAM bitcells toward 3D VLSI integration”, that was presented virtually during the 2020 Symposia on VLSI Technology & Circuits, June 14-19. This work was done in collaboration with Samsung Electronics Co., Ltd.

“3D sequential integration becomes more and more attractive for More Moore and More than Moore applications,” the paper reports. “One of the main advantages of this 3D technology vs. a die-to-die one, for instance, is the major gain of density brought by the nanometer-scale lithographic alignment between the two levels. However, one of the most important challenges is to implement at low temperature high performance CMOS devices for the upper level, after fabrication of the bottom level devices.

“The maximum temperature regarding bottom device’s silicide integrity and inter-tier interconnections preserved reliability should not exceed 500°C for a couple of hours,” the paper reported. “Several low-temperature devices have been published in literature, but up to our knowledge, this is the first proof of integration of CMOS devices processed at a temperature of 500°C, fully compatible with advanced FDSOI platform technologies.”

In addition, the CEA-Leti team demonstrated for the first time ring oscillators and SRAM bitcells processed at 500°C, further paving the way for high-performance 3D monolithic CMOS integration, intended for advanced logic, RF, in-memory computing, AI, imaging and display applications.

About CEA-Leti (France)

Leti, a technology research institute at CEA, is a global leader in miniaturization technologies enabling smart, energy-efficient and secure solutions for industry. Founded in 1967, CEA-Leti pioneers micro-& nanotechnologies, tailoring differentiating applicative solutions for global companies, SMEs and startups. CEA-Leti tackles critical challenges in healthcare, energy and digital migration. From sensors to data processing and computing solutions, CEA-Leti’s multidisciplinary teams deliver solid expertise, leveraging world-class pre-industrialization facilities. With a staff of more than 1,900, a portfolio of 3,100 patents, 10,000 sq. meters of cleanroom space and a clear IP policy, the institute is based in Grenoble, France, and has offices in Silicon Valley and Tokyo. CEA-Leti has launched 65 startups and is a member of the Carnot Institutes network. Follow us on www.leti-cea.com and @CEA_Leti.

Leave a Reply

featured blogs
Jul 3, 2020
[From the last episode: We looked at CNNs for vision as well as other neural networks for other applications.] We'€™re going to take a quick detour into math today. For those of you that have done advanced math, this may be a review, or it might even seem to be talking down...
Jul 2, 2020
Using the bitwise operators in general, and employing them to perform masking operations in particular, can be extremely efficacious....
Jul 2, 2020
In June, we continued to upgrade several key pieces of content across the website, including more interactive product explorers on several pages and a homepage refresh. We also made a significant update to our product pages which allows logged-in users to see customer-specifi...

Featured Video

Product Update: DesignWare® Foundation IP

Sponsored by Synopsys

Join Prasad Saggurti for an update on Synopsys’ DesignWare Foundation IP, including the world’s fastest TCAMs, widest-voltage GPIOs, I2C & I3C IOs, and LVDS IOs. Synopsys Foundation IP is silicon-proven in 7nm in more than 500,000 customer wafers, and 5nm is in development.

Click here for more information about DesignWare Foundation IP: Embedded Memories, Logic Libraries & GPIO

Featured Paper

Cryptography: A Closer Look at the Algorithms

Sponsored by Maxim Integrated

Get more details about how cryptographic algorithms are implemented and how an asymmetric key algorithm can be used to exchange a shared private key.

Click here to download the whitepaper

Featured Chalk Talk

Selecting the Right MOSFET: BLDC Motor Control in Battery Applications

Sponsored by Mouser Electronics and Nexperia

An increasing number of applications today rely on brushless motors, and that means we need smooth, efficient motor control. Choosing the right MOSFET can have a significant impact on the performance of your design. In this episode of Chalk Talk, Amelia Dalton chats with Tom Wolf of Nexperia about MOSFET requirements for brushless motor control, and how to chooser the right MOSFET for your design.

More information about Nexperia PSMN N-Channel MOSFETs