industry news
Subscribe Now

Analog Devices’ New Multi-Channel, Mixed-Signal RF Converter Platform Expands Call Capacity and Data Throughput for Wireless Carriers

NORWOOD, Mass.–(BUSINESS WIRE)– Analog Devices, Inc. (ADI) today introduced a mixed-signal front-end (MxFE™) RF data converter platform that combines high-performance analog and digital signal processing for a range of wireless equipment such as 4G LTE and 5G millimeter-wave (mmWave) radios. ADI’s new AD9081/2 MxFE platform allows manufacturers to install multiband radios in the same footprint as single-band radios, which as much as triples call capacity available in today’s 4G LTE base stations. With a 1.2 GHz channel bandwidth, the new MxFE platform also enables wireless carriers that are adding more antennas to their cell towers to meet the higher radio density and data-rate requirements of emerging mmWave 5G.

By shifting more of the frequency translation and filtering from the analog to the digital domain, the AD9081/2 provides designers with the software configurability to customize their radios. The new multi-channel MxFE platform meets the needs of other wide-bandwidth applications in 5G test and measurement equipment, broadband cable video streaming, multi-antenna phased array radar systems and low-earth-orbit satellite networks.

“Cell towers are nearing saturation based on the number of antennas they must support, and our customers want lighter weight, multiband radios that fit into today’s radio form factor,” said Kimo Tam, general manager, High-Speed Mixed-Signal group, Analog Devices. “They are also asking for software-defined RF platforms with the configurability and scalability to enable one platform to be used across multiple geographies and use cases.”

The AD9081 and AD9082 MxFE devices integrate eight and six RF data converters, respectively, which are manufactured using 28 nm CMOS process technology. Both MxFE options achieve the industry’s widest instantaneous signal bandwidth (up to 2.4 GHz), which simplifies hardware design by reducing the number of frequency translation stages and relaxing filter requirements. This new level of integration addresses the space constraints of wireless device designers by lowering chip count and yielding a 60 percent reduction in printed-circuit-board (PCB) area compared to alternative devices.

The MxFE platform processes more of the RF spectrum band and embeds DSP functions on-chip to enable the user to configure the programmable filters and digital up and down conversion blocks to meet specific radio signal bandwidth requirements. This results in a 10X power reduction compared to architectures that perform RF conversion and filtering on the FPGA, while freeing up valuable processor resources or allowing designers to use a more cost-effective FPGA.

Pricing and Availability

Product

RF Data
converters

Sample
Availability

Full
Production

Price Each
Per 1,000

Packaging

AD9081

Quad 12-bit 4Gsps
ADCs

Quad 16-bit
12Gsps DACs

Sept 2019 Mar 2020 $1,487

324-BGA
Thermally
Enhanced

JESD204B and
JESD204C

AD9082

Dual 12-bit 6Gsps
ADCs

Quad 16-bit
12Gsps DACs

Sept 2019 Dec 2019 $1,500

324-BGA
Thermally
Enhanced

JESD204B and
JESD204C

About Analog Devices
Analog Devices is a leading global high-performance analog technology company dedicated to solving the toughest engineering challenges. We enable our customers to interpret the world around us by intelligently bridging the physical and digital with unmatched technologies that sense, measure, power, connect and interpret. Visit http:www.analog.com.

 

Leave a Reply

featured blogs
Jun 5, 2020
'€œYou'€™ll know it when you see it.'€ Have you had that moment where you know what you want but don'€™t know what it is? So you start looking around the store, the internet, or your house to find it. To help you find those '€œknow it when you see it'€ solutions...
Jun 4, 2020
[From the last episode: We started this new with a broad introduction to machine learning.] While neuromorphic neural networks '€“ that is, ones that work the way our brains work '€“ may still be off in the future a ways, someone came up with a different way to emulate th...
Jun 2, 2020
It just struck me that I have only 37 years remaining to complete my Countdown Timer project before it becomes superfluous to requirements....

Featured Video

DesignWare 112G Ethernet PHY IP Insertion Loss Capabilities

Sponsored by Synopsys

This video shows the performance results of the Synopsys 112G PHY receiver to varying amounts of channel insertion loss. The IP meets the standards requirements. With leading power, performance, and area, the IP is available in a range of FinFET processes for high-performance.

Click here for more information

Featured Paper

Prolong Your Smart Watch with SIMO

Sponsored by Maxim Integrated

This design solution discusses the advantages of powering a smart watch with a highly integrated PMIC based on the single-inductor multiple output (SIMO) architecture. We compare it to a typical solution with low level of integration which leads to inefficiencies in PCB space and power consumption. Thanks to a unique SIMO architecture, the MAX77654 PMIC delivers more power efficiently in a smaller space, enabling longer battery life and smaller form factor for smart watches and other wearables.

Click here to download the whitepaper

Featured Chalk Talk

AVX Supercapacitors: PrizmaCap

Sponsored by Mouser Electronics and AVX

If your application requires a supercapacitor, there are a lot of options. You need the right form factor, temperature range, weight, and capacitance, of course. In this episode of Chalk Talk, Amelia Dalton chats with Eric DeRose of AVX about choosing the right supercapacitor and about PrizmaCap - a new supercapacitor with low height, high temperature, and lightweight.

Click here for more information AVX PrizmaCap™