industry news
Subscribe Now

ACEINNA Expands AMR Based Current Sensor Family

Fully integrated 3.3 volt current Sensor for Server Farm and Telecom Power Supplies, IoT applications, Appliances, Inverters and Motor Control, Industrial Robots and Manufacturing Systems, Automotive EV Charging Stations and many other tech applications

Andover, Massachusetts- June 12, 2019

ACEINNA today announced that their industry leading MCx1101 family of Current Sensors now supports 3.3 volt applications. These highly accurate, wide bandwidth AMR-based current sensors are now available for a wide range of ADC and microprocessor based power systems and applications.

Units are now available for sampling and volume shipments.

“Our integrated, AMR based Current Sensor family provides the best performance for the price in the industry,” says Khagendra Thapa, VP Current Sensor Product for ACEINNA. “Unlike other AMR based current sensing solutions on the market that require an extensive and time consuming integration to make them work, ours are plug and play.”

The MCx1101 are fully integrated, bi-directional current sensors that offer much higher DC accuracy and dynamic range compared with alternative solutions. For example, the ±20A version has a typical accuracy of ±0.6% and are guaranteed to achieve an accuracy of ±2.0% (max) at 85°C. These new current sensors are in an industry standard SOIC-16 package with a low impedance (0.9 milli-ohm) current path and are certified by UL/IEC/EN for isolated applications.

These new current sensors also guarantee an offset of ±60mA, or ±0.3% of FSR (max) over temperature, which means that high accuracy can be achieved over a roughly 10:1 range of currents providing significant improvement in dynamic range vs. leading Hall-sensor-based devices.

These devices deliver a unique combination of high accuracy, 1.5MHz signal bandwidth with industry benchmark phase shift vs. frequency, fast output step response and 4.8kV isolation making them ideal for current sensing in fast current control loops and protection for high performance power supplies, inverters and motor control applications.

The fast response and high bandwidth of the MCx1101 is also ideal for fast switching SiC and GaN based power stages enabling power system designers to make use of the higher speeds and smaller components enabled by wide band-gap switches.  Output step response time is 0.3us. The MCx1101 also provides an integrated over current detection flag to help implement OCD (Over Current Detection) required in modern power systems. Over current detection response time is fast 0.2us.

The family includes ±50, ±20, and ±5A ranges, and is offered in both fixed gain (MCA1101) and ratiometric gain (MCR1101) versions.

All About AMR

AMR technology has significant advantages vs. other approaches such as Hall, CT (current transformer), and shunt resistors. Compared to Hall-based current sensors, AMR provides significantly higher bandwidth and dynamic range; Compared with CT’s, AMR offers reduced size and cost, as well as response to dc; in comparison with a shunt resistor, AMR provides a fully integrated solution, eliminating the external amplifier and related circuitry required for high voltage isolation, which is a significant challenge at high frequencies. In addition, shunt resistors require enough IR drop to achieve accuracy goals at the low end of the current range, which often means they are dissipating undesirable levels of power at nominal currents. By contrast, the AMR device only measures the magnetic field generated by the current, so the I2R losses can be minimized.

For additional technical details, the ACEINNA MCA1101 and MCR1101 Current Sensor data sheet is available at https://www.aceinna.com/current-sensors.

Order the part from Mouser at https://www.mouser.com/ACEINNA/Sensors/Current-Sensors/_/N-7gqeu?P=1y91mso

ABOUT ACEINNA

ACEINNA Inc., headquartered in Andover, Massachusetts, provides leading edge MEMS-based sensing solutions that help our customers improve the reliability, cost, features, and performance of their end products and equipment. In 2017, ACEINNA was spun off from MEMSIC which is now a part of a public company.  ACEINNA has been developing MR based sensor and magnetic thin film manufacturing for 15 years. ACEINNA provides a proven technology platform with over 300M MR based electronic compass units that have been integrated into mobile devices, automotive and industrial applications. The company has manufacturing facilities in Wuxi, China, and R&D facilities in San Jose CA, Andover MA, and Chicago IL.

Leave a Reply

featured blogs
Jul 9, 2020
It happens all the time. We'€™re online with a designer and we'€™re looking at a connector in our picture search. He says '€œI need a connector that looks just like this one, but '€¦'€ and then he goes on to explain something he needs that'€™s unique to his desig...
Jul 6, 2020
If you were in the possession of one of these bodacious beauties, what sorts of games and effects would you create using the little scamp?...
Jul 3, 2020
[From the last episode: We looked at CNNs for vision as well as other neural networks for other applications.] We'€™re going to take a quick detour into math today. For those of you that have done advanced math, this may be a review, or it might even seem to be talking down...

Featured Video

Product Update: New DesignWare® IOs

Sponsored by Synopsys

Join Faisal Goriawalla for an update on Synopsys’ DesignWare GPIO and Specialty IO IP, including LVDS, I2C and I3C. The IO portfolio is silicon-proven across a range of foundries and process nodes, and is ready for your next SoC design.

Click here for more information about DesignWare Embedded Memories, Logic Libraries and Test Videos

Featured Chalk Talk

Mom, I Have a Digital Twin? Now You Tell Me?

Sponsored by Cadence Design Systems

Today, one engineer’s “system” is another engineer’s “component.” The complexity of system-level design has skyrocketed with the new wave of intelligent systems. In this world, optimizing electronic system designs requires digital twins, shifting left, virtual platforms, and emulation to sort everything out. In this episode of Chalk Talk, Amelia Dalton chats with Frank Schirrmeister of Cadence Design Systems about system-level optimization.

Click here for more information