industry news
Subscribe Now

Lam Research Introduces Dielectric Atomic Layer Etching Capability for Advanced Logic

FREMONT, CA — (Marketwired) – 9/6/16 – Lam Research Corp. (Nasdaq: LRCX), an advanced manufacturer of semiconductor equipment, today announced that it is expanding its atomic layer etching (ALE) portfolio with the addition of ALE capability on its Flex™ dielectric etch systems. Enabled by Lam’s Advanced Mixed Mode Pulsing (AMMP) technology, the new ALE process has demonstrated the atomic-level control needed to address key challenges in scaling logic devices to 10 nm and below. First in the industry to use plasma-enhanced ALE in production for dielectric films, the latest Flex system has been adopted as tool of record for high-volume manufacturing of logic devices. 

“From transistor and contact creation to interconnect patterning, a new level of precision is needed by logic manufacturers to continue scaling beyond the 10 nm technology node,” said Vahid Vahedi, group vice president, Etch Product Group. “For device-enabling applications like self-aligned contacts, where etch helps create critical structures, conventional technologies do not provide sufficient control for the stringent specifications now demanded. Our latest Flex product with dielectric ALE delivers atomic-scale control with proven productivity to meet customers’ key requirements.”

To continue logic device scaling, chipmakers are adopting new integration schemes such as those using self-aligned contacts (SACs) in order to address issues like RC delay. As a result, contact etch has become one of the most crucial processes, directly impacting both wafer yield and transistor performance. In order to define critical device structures with high fidelity, the etch process requires directional (anisotropic) capability with ultra-high selectivity, while also delivering the productivity needed for manufacturing.

For next-generation logic and foundry applications, Lam’s Flex dielectric etch systems offer the industry’s most advanced capacitively coupled plasma (CCP) reactor, featuring a unique, small-volume design to deliver repeatable results. The latest system uses proprietary AMMP technology to enable ALE of dielectric films such as silicon dioxide (SiO2). This capability results in a 2x improvement in selectivity over previous dielectric etch technologies while delivering atomic-level control.

About Lam Research

Lam Research Corp. (Nasdaq: LRCX) is a trusted global supplier of innovative wafer fabrication equipment and services to the semiconductor industry. Lam’s broad portfolio of market-leading deposition, etch, and clean solutions helps customers achieve success on the wafer by enabling device features that are 1,000 times smaller than a grain of sand, resulting in smaller, faster, more powerful, and more power-efficient chips. Through collaboration, continuous innovation, and delivering on commitments, Lam is transforming atomic-scale engineering and enabling its customers to shape the future of technology. Based in Fremont, Calif., Lam Research is a Nasdaq-100 Index® and S&P 500® company whose common stock trades on the Nasdaq Global Select MarketSM under the symbol LRCX. For more information, please visit www.lamresearch.com. (LRCX-P)

Leave a Reply

featured blogs
Jul 6, 2022
With the DRAM fabrication advancing from 1x to 1y to 1z and further to 1a, 1b and 1c nodes along with the DRAM device speeds going up to 8533 for Lpddr5/8800 for DDR5, Data integrity is becoming a... ...
Jul 6, 2022
Design Automation Conference (DAC) 2022 is almost here! Explore EDA and cloud design tools, autonomous systems, AI, and more with our experts in San Francisco. The post DAC 2022: A Glimpse into the World of Design Automation from the Cloud to Cryogenic Computing appeared fir...
Jun 28, 2022
Watching this video caused me to wander off into the weeds looking at a weird and wonderful collection of wheeled implementations....

featured video

Synopsys 112G Ethernet IP Interoperating with Optical Components & Equalizing E-O-E Link

Sponsored by Synopsys

This OFC 2022 demo features the Synopsys 112G Ethernet IP directly equalizing electrical-optical-electrical (E-O-E) channel and supporting retimer-free CEI-112G linear drive for low-power applications.

Learn More

featured paper

Addressing high-voltage design challenges with reliable and affordable isolation tech

Sponsored by Texas Instruments

Check out TI’s new white paper for an overview of galvanic isolation techniques, as well as how to improve isolated designs in electric vehicles, grid infrastructure, factory automation and motor drives.

Click to read more

featured chalk talk

Solutions for Heterogeneous Multicore

Sponsored by Siemens Digital Industries Software

Multicore processing is more popular than ever before but how do we take advantage of this new kind of processing? In this episode of Chalk Talk, Jeff Hancock from Siemens and Amelia Dalton investigate the challenges inherent in multicore processing, the benefits of hypervisors and multicore frameworks, and what you need to consider when choosing your next multicore processing solution.

Click here for more information about Multicore Enablement: Enabling today’s most advanced MPSoC systems