industry news
Subscribe Now

Sensors in Motion Delivers First MEMS Navigation Grade System to Enable Drones, Cars, Increased Food and Energy Production

SEATTLE October 12, 2014 Sensors in Motion (SIM) is pleased to announce completion of the  first ever MEMS Navigation Grade Inertial Navigation System (INS) with the potential to revolutionize the navigation and positioning market, enabling increased food production, energy development, autonomous cars and saving warfighters lives.

This development promises to transform the $8 Billion/year inertial market with new products offering price/performance specifications radically superior to anything currently available. The first INS devices have been delivered to the Army CERDEC Night Vision Electronic Sensors Directorate (NVESD).

SIM, a spinout from NASA’s famed Jet Propulsion Laboratories (JPL) and California Institute of Technology, is developing a family of inertial-grade, high-accuracy MEMS gyroscopes, accelerometers and Inertial Measurement Unit ( IMU) solutions. It has perfected unique MEMS structures using volume silicon wafer processing techniques and is now producing gyroscopes having ARW (Angle Random Walk) less than 0.0035 degree/root-hour and Bias instability less than 0.01 degree/hour which show extraordinary vibration and temperature immunity.   This performance is far better than any other MEMS gyro produced and is comparable to Ring Laser (RLG)  and Fiber Optic (FOG) gyros that are 20 times larger and 10-100 times more expensive.  While other MEMS producers target the rate class sensors, SIM specifically developed its 4mm devices for the high performance market, believing true navigation grade capability matters. The technology uses an 8 fold symmetrical resonator mounted on a single node instead of the usual tuning-fork, spring mass or BAW resonator used in most MEMS gyroscopes.

These features are mandatory for a number of emerging applications where precision not available from GPS or vehicle position accuracy is required including autonomous vehicles, drones, mining asset tracking, dead reckoning, agricultural seed placement, oil and gas directional drilling, self-driving autos, fire fighter navigation, optical image stabilization, Industrial equipment azimuth, aerospace and defense products and most GPS denied environments in addition to entirely new applications. SIM is sampling evaluation kits to strategic customers interested in partnering to develop sensor packages unique to their applications. The closely held company has been internally funded alongside several public corporations and government sources that require its level of performance.

“We see ourselves as a firm that  opens up an additional $2B sensor market needing size, weight, power, cost and performance that does not exist today. “ said David Smukowski, CEO of SIM.

With adequate resources the company says further performance gains are possible, even while shrinking the devices smaller for better economics.

Sensors in Motion is a leading creator of navigation grade, solid state silicon and quartz MEMS-based sensor solutions to revolutionize navigation, positioning, stabilization and control with best-in-class performance, size, weight, power and cost.

Please visit www.sensorsinmotions.com  or  write us  inquiries@sensorsinmotion.com

8 thoughts on “Sensors in Motion Delivers First MEMS Navigation Grade System to Enable Drones, Cars, Increased Food and Energy Production”

  1. Pingback: binaural
  2. Pingback: Bdsm
  3. Pingback: DMPK
  4. Pingback: have a peek here

Leave a Reply

featured blogs
Sep 28, 2020
Have you ever been trying to leave a party or a conversation, and someone says '€œOne last thing'€¦?'€ Now, you have a decision to make, listen politely or run, run as fast as you can. Well, we'€™re going to say it. '€œOne last thing'€¦'€ But please don'€™t ...
Sep 28, 2020
Power is HOT and it touches everything and everybody! But we can help with power analysis for your chip!! Do you want to: Sneak peek inside the schematic? Analyze power for various blocks? Identify... [[ Click on the title to access the full blog on the Cadence Community sit...
Sep 25, 2020
What do you think about earphone-style electroencephalography sensors that would allow your boss to monitor your brainwaves and collect your brain data while you are at work?...
Sep 25, 2020
[From the last episode: We looked at different ways of accessing a single bit in a memory, including the use of multiplexors.] Today we'€™re going to look more specifically at memory cells '€“ these things we'€™ve been calling bit cells. We mentioned that there are many...

Featured Video

Product Update: Family of DesignWare Ethernet IP for Time-Sensitive Networking

Sponsored by Synopsys

Hear John Swanson, our product expert, give an update on Synopsys’ DesignWare® Ethernet IP for Time-Sensitive Networking (TSN), which is compliant with IEEE standards and enables predictable guaranteed latency in automotive ADAS and industrial automation SoCs.

Click here for more information about DesignWare Ethernet Quality-of-Service Controller IP

Featured Paper

An Introduction to Automotive LIDAR

Sponsored by Texas Instruments

This white paper is an introduction to industrial and automotive time-of-flight (ToF) light detection and ranging (LIDAR) solutions to serve next-generation autonomous systems.

Click here to download the whitepaper

Featured Chalk Talk

Single Pair Ethernet

Sponsored by Mouser Electronics and Harting

Industry 4.0 brings serious demands on communication connections. Designers need to consider interoperability, processing, analytics, EMI reduction, field rates, communication protocols and much more. In this episode of Chalk Talk, Amelia Dalton chats with Piotr Polak and McKenzie Reed of Harting about using single-pair Ethernet for Industry 4.0.

Click here for more information about HARTING T1 Industrial Single Pair Ethernet (SPE) Products