industry news
Subscribe Now

Element Six’s GaN-on-Diamond Wafers Proven by Raytheon to provide 3x improvement in power density vs GaN-on-SiC for RF Devices

14 May, 2014—Element Six, the world leader in synthetic diamond supermaterials and a member of the De Beers Group of Companies, today announced that its Gallium Nitride (GaN)-on-Diamond wafers have been proven by Raytheon Company to significantly outperform industry standard Gallium Nitride-on-Silicon Carbide (GaN-on-SiC) in RF devices—reducing thermal resistance, increasing RF power density, and preserving RF functionality.

In high electron mobility transistor (HEMT) devices, Raytheon achieved a 3 times improvement in GaN-on-Diamond’s RF areal power density, compared to GaN-on-SiC devices. The GaN-on-Diamond devices also demonstrated a nearly 3 times reduction in thermal resistance. Raytheon used several industry standard thermal measurement techniques, including time-domain thermal reflectance (TDTR), laser flash, and resistance thermometry, as well as finite-element modeling, to establish the consistency of these results.

Upon reaching these milestones, Raytheon has met the aggressive objectives of the Defense Advanced Research Project Agency’s (DARPA) Near Junction Thermal Transport (NJTT) program, which aimed to develop GaN RF devices that exhibit three times or greater improvement in power density through improved thermal management.

GaN-on-Diamond substrates, fabricated by Element Six, exhibit a clear advantage over other substrate materials because synthetic diamond dissipates heat up to five times more effectively than silicon or silicon carbide. This dissipation advantage, coupled with the close proximity of the diamond to the GaN results in a dramatic reduction in the thermal resistance of GaN-on-Diamond wafers.  Lower thermal resistance enables simpler and less expensive thermal management systems and reliable operation in higher ambient temperatures, as well as more cost-effective RF devices.

“Heat issues account for more than 50 percent of all electronic failures, and limit GaN’s inherent power-density performance potential,” said Adrian Wilson, director of Element Six Technologies Group. “RF and high-voltage power device manufacturers that leverage GaN-on-Diamond will have access to unmatched wafer thermal conductivity, and be able to deliver rapid, efficient and cost-effective heat extraction. As the first company to make GaN-on-Diamond wafers commercially available, we look forward to collaborating with manufacturers to tap into the unique properties of synthetic diamond.”
  
Having been designed for manufacturers of transistor-based circuits with high power, high voltage, and high frequency characteristics, Element Six’s GaN-on-Diamond wafers will lead to the creation of smaller, faster, more energy efficient, and higher power electronic devices that enjoy longer lifespans and improved reliability. GaN-on-Diamond technology offers revolutionary advantages over all other available RF semiconductor materials, delivering superior system performance and cost, which makes it ideal for next generation device technology in both defense and commercial applications.

To learn more about GaN-on-Diamond wafers for advanced defense or commercial applications, please visit www.e6.com/GaN

About Element Six

Element Six is a synthetic diamond supermaterials company. Element Six is a member of The De Beers Group of Companies, its majority shareholder. Element Six designs, develops and produces synthetic diamond supermaterials, and operates worldwide with its head office registered in Luxembourg, and primary manufacturing facilities in China, Germany, Ireland, Sweden, South Africa, U.S. and the U.K.

Element Six supermaterial solutions are used in applications such as cutting, grinding, drilling, shearing and polishing, while the extreme properties of synthetic diamond beyond hardness are already opening up new applications in a wide array of industries such as optics, power transmission, water treatment, semiconductors and sensors.

Leave a Reply

featured blogs
Apr 13, 2021
If a picture is worth a thousand words, a video tells you the entire story. Cadence's subsystem SoC silicon for PCI Express (PCIe) 5.0 demo video shows you how we put together the latest... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Apr 12, 2021
The Semiconductor Ecosystem- It is the definition of '€œHigh Tech'€, but it isn'€™t just about… The post Calibre and the Semiconductor Ecosystem appeared first on Design with Calibre....
Apr 8, 2021
We all know the widespread havoc that Covid-19 wreaked in 2020. While the electronics industry in general, and connectors in particular, took an initial hit, the industry rebounded in the second half of 2020 and is rolling into 2021. Travel came to an almost stand-still in 20...
Apr 7, 2021
We explore how EDA tools enable hyper-convergent IC designs, supporting the PPA and yield targets required by advanced 3DICs and SoCs used in AI and HPC. The post Why Hyper-Convergent Chip Designs Call for a New Approach to Circuit Simulation appeared first on From Silicon T...

featured video

Meeting Cloud Data Bandwidth Requirements with HPC IP

Sponsored by Synopsys

As people continue to work remotely, demands on cloud data centers have never been higher. Chip designers for high-performance computing (HPC) SoCs are looking to new and innovative IP to meet their bandwidth, capacity, and security needs.

Click here for more information

featured paper

Understanding the Foundations of Quiescent Current in Linear Power Systems

Sponsored by Texas Instruments

Minimizing power consumption is an important design consideration, especially in battery-powered systems that utilize linear regulators or low-dropout regulators (LDOs). Read this new whitepaper to learn the fundamentals of IQ in linear-power systems, how to predict behavior in dropout conditions, and maintain minimal disturbance during the load transient response.

Click here to download the whitepaper

Featured Chalk Talk

Digi Remote Manager

Sponsored by Mouser Electronics and Digi

With the complexity of today’s networks, the proliferation of IoT, and the increase in remote access requirements, remote management is going from “nice to have” to “critical” in network design and deployment. In this episode of Chalk Talk, Amelia Dalton chats with Stefan Budricks of Digi International about how Digi Remote Manager can address your remote management and security needs.

Click here for more information about DIGI XBee® Tools