industry news
Subscribe Now

Altera to Build Next-Generation, High-Performance FPGAs on Intel’s 14nm Tri-Gate Technology

San Jose, Calif.,and Santa Clara, Calif., February 25, 2013—Altera Corporation andIntel Corporation today announced that the companies have entered into an agreement for the future manufacture of Altera FPGAs on Intel’s 14 nm tri-gate transistor technology. These next-generation products, which target ultra high-performance systems for military, wireline communications, cloud networking, and compute and storage applications, will enable breakthrough levels of performance and power efficiencies not otherwise possible. 

“Altera’s FPGAs using Intel 14 nm technology will enable customers to design with the most advanced, highest-performing FPGAs in the industry,” said John Daane, president, CEO and chairman of Altera. “In addition, Altera gains a tremendous competitive advantage at the high end in that we are the only major FPGA company with access to this technology.”

Altera’s next-generation products will now include 14 nm, in addition to previously announced 20 nm technologies, extending the company’s tailored product portfolio that meets myriad customer needs for performance, bandwidth and power efficiency across diverse end applications. 

“We look forward to collaborating with Altera on manufacturing leading-edge FPGAs, leveraging Intel’s leadership in process technology,” said Brian Krzanich, chief operating officer, Intel.  “Next-generation products from Altera require the highest performance and most power-efficient technology available, and Intel is well positioned to provide the most advanced offerings.”

Adding this world-class manufacturer to Altera’s strong foundation of leading-edge suppliers and partners furthers the company’s ability to deliver on the promise of silicon convergence; to integrate hardware and software programmability, microprocessors, digital signal processing, and ASIC capability into a single device; and deliver a more flexible and economical alternative to traditional ASICs and ASSPs.

About Intel

Intel (NASDAQ: INTC) is a world leader in computing innovation. The company designs and builds the essential technologies that serve as the foundation for the world’s computing devices. Additional information about Intel is available at newsroom.intel.com and blogs.intel.com.

About Altera

Altera® programmable solutions enable system and semiconductor companies to rapidly and cost effectively innovate, differentiate and win in their markets. Find out more about Altera’s FPGAsSoCsCPLDs and ASICs at www.altera.com. Follow Altera via FacebookRSS and Twitter, and by subscribing to product update emails and newsletters.
 

One thought on “Altera to Build Next-Generation, High-Performance FPGAs on Intel’s 14nm Tri-Gate Technology”

  1. This is HUGE news. We believe Intel is at least a process node ahead of all competitors in 14nm Tri-Gate (FinFET) development. Since Altera’s deal apparently precludes Xilinx from working with Intel on the technology, this could easily mean a full process node advantage for Altera’s FPGAs – starting in a couple of years. I did a blog post about it here:
    https://www.eejournal.com/blog/altera-partners-with-intel-for-14nm-tri-gate-fpgas4/

    What do you think?

Leave a Reply

featured blogs
Sep 26, 2022
Most engineers are of the view that all mesh generators use an underlying geometry that is discrete in nature, but in fact, Fidelity Pointwise can import and mesh both analytic and discrete geometry. Analytic geometry defines curves and surfaces with mathematical functions. T...
Sep 22, 2022
On Monday 26 September 2022, Earth and Jupiter will be only 365 million miles apart, which is around half of their worst-case separation....
Sep 22, 2022
Learn how to design safe and stylish interior and exterior automotive lighting systems with a look at important lighting categories and lighting design tools. The post How to Design Safe, Appealing, Functional Automotive Lighting Systems appeared first on From Silicon To Sof...

featured video

PCIe Gen5 x16 Running on the Achronix VectorPath Accelerator Card

Sponsored by Achronix

In this demo, Achronix engineers show the VectorPath Accelerator Card successfully linking up to a PCIe Gen5 x16 host and write data to and read data from GDDR6 memory. The VectorPath accelerator card featuring the Speedster7t FPGA is one of the first FPGAs that can natively support this interface within its PCIe subsystem. Speedster7t FPGAs offer a revolutionary new architecture that Achronix developed to address the highest performance data acceleration challenges.

Click here for more information about the VectorPath Accelerator Card

featured paper

Algorithm Verification with FPGAs and ASICs

Sponsored by MathWorks

Developing new FPGA and ASIC designs involves implementing new algorithms, which presents challenges for verification for algorithm developers, hardware designers, and verification engineers. This eBook explores different aspects of hardware design verification and how you can use MATLAB and Simulink to reduce development effort and improve the quality of end products.

Click here to read more

featured chalk talk

The Composite Power Inductance Story

Sponsored by Mouser Electronics and Vishay

Power inductor technology has made a huge difference in the evolution of our electronic system designs. In this episode of Chalk Talk, Amelia Dalton chats with Tim Shafer from Vishay about the history of power inductor technology, how Vishay developed the most compact and efficient power inductor on the market today and why Vishay’s extensive portfolio of composite power inductors might be the best solution for your next embedded system design.

Click here for more information about Vishay Inductors