industry news
Subscribe Now

Kilopass Announces Breakthrough Technology to Quadruple Memory Capacity for Embedding Non-Volatile Data in System-on-Chip (SOC) Products

Santa Clara, Calif., September 18, 2012 — Kilopass Technology Inc., a leading provider of semiconductor logic non-volatile memory (NVM) intellectual property (IP), describes at MemCon in Santa Clara, Calif., today its new embedded VCM (Vertical Cross-point Memory) NVM IP bit cell. The new VCM bit cell quadruples the density of today’s anti-fuse NVM IP bit cell. The VCM bit cell will make possible program storage where today’s embedded non-volatile memory (eNVM) technology is cost-prohibitive or unavailable at capacities of 4Mb to 32Mb. It will also enable a higher level of performance more similar to SRAM compared to existing slower eNVM technologies or external flash or EEPROM chips.

eNVM is a method to store permanent data or software onto a standard chip using the industry-standard CMOS logic manufacturing process. The integration of eNVM helps to reduce cost, footprint, and power of the chip. However, until now eNVM has been limited to a 4Mb upper limit of capacity and limited erase cycles, also known as endurance. With the VCM bit cell technology, Kilopass will dramatically scale this limit to 32Mb with capability to scale beyond, thus providing more endurance.

“The VCM bit cell is an entirely new memory bit cell giving us an unprecedented memory density in standard logic processes from 180nm to the leading edge 20nm and beyond,” said Harry Luan, Chief Technology Officer at Kilopass Technology Inc. “Our R&D team fabricated the patent-pending VCM bit cell technology, which reduces the silicon area of the bit cell four fold, while contributing to improved performance, reduced dynamic power requirements, and greater endurance. Developed after more than four years from the inception of the concept in 2008 to today’s announcement, the new VCM bit cell will enable NVM IP to replace Serial Flash/EEPROMin applications that require execute-in-place and that must harvest power or run for extended periods between battery charges.”

About The VCMTM Bit Cell Technology

The VCM bit cell technology differs from that of the current Kilopass NVM IP, which requires a lateral selection transistor in planar (X-Y) directions to form memory bits. The VCM bit cell technology uses one single P-MOS transistor to both store and control the memory content. This compaction method reduces the footprint of the single bit cell from about 75 F2 for Kilopass’ current XPM memory to 12 F2 for VCM memory, where each F describes a manufacturable feature. By comparison, a typical embedded flash memory has an area of about 50 F2, and the state-of-the-art NAND flash bit cell with a fully customized memory process technology and extra cost can only achieve 6F2, about half of the area of the VCM bit cell. The VCM bit cell is the densest eNVM that exists in standard logic process.

VCM bit cell technology adds a simple processing step/mask that needs no new materials, equipment, or additional thermal cycles. An additional relatively coarse grade mask is used, which is inexpensive and easy to manufacture. Indeed, the VCM bit cell memory technology has been designed into a 110nm analog/mixed signal process in three different test shuttles with successful results. VCM bit cell technology is currently ready to be integrated into the upcoming NumeraTM product in early 2013.

“We are excited about the potential of the VCM memory bit cell,” said Linh Hong, vice president of marketing at Kilopass Technology Inc. “VCM bit cell technology is a quantum step forward in the development of anti-fuse NVM IP in standard logic process. We believe it’s the next natural step to deliver the relentless cost, power, performance and integration improvements the industry demands.”

Applications

The VCM bit cell memory technology fills an eNVM void not addressed by external components such as serial-flash/EEPROM, Read-only Memory (ROM), and embedded flash (eFlash).

Today’s external serial EEPROM or serial Flash with an on-chip shadow SRAM is untenable because of power and cost constraints. The Embedded flash alternative is not available at process nodes below 65nm and, even when available, may add too much cost to a predominantly logic SoC. The read-only memory (mask-ROM) alternative comes with the drawback of having to be configured during design and any program change requiring an expensive and lengthy design re-spin. The VCM bit cell provides an attractive alternative to all three of these solutions that overcomes their shortcomings. It reduces the bill of materials cost and logistics requirement of an external EEPROM and replaces the associated embedded shadow SRAM function in an equivalent silicon area. The memory is a small fraction of the cost of embedded EEPROM or flash and is built on Kilopass’ proven, scalable, anti-fuse technology foundation. It adds the flexibility not possible with ROM of being programmable at final test and reprogrammable in the field if program changes are required.

Kilopass will initially target the ultra-low power, high-integration wireless devices built in 55nm to 40nm technologies, where the MCU-like SOC requires extended battery life, small form factor, and execute-in-place performance, all ideal for the VCM bit cell technology. In addition, these devices often require different software versions and updates, which make the VCM memory technology superior to mask-based memory like ROM.

Availability

Kilopass has completed the process technology/recipe development for the VMC memory technology and is currently undergoing foundry enablement. Once completed, it will be incorporated into the new Numera few-time programmable offering from Kilopass. For more information on taking advantage of the VCM bit cell, contact info@kilopass.com.

About Kilopass

Kilopass Technology, Inc., a leading supplier of embedded NVM intellectual property, leverages standard logic CMOS processes to deliver one-time programmable (OTP) and many-time programmable (MTP) memory. With 58 patents granted or pending and more than 800,000 wafers shipped from a dozen foundries and Integrated Device Manufacturers (IDM), Kilopass has more than 150 customers in applications ranging from storage of firmware and security codes to calibration data and other application-critical information. The company is headquartered in Santa Clara, Calif. For more information, visit www.kilopass.com or email info@kilopass.com. Follow Kilopass on Twitter athttp://twitter.com/#!/Kilopass_.

Leave a Reply

featured blogs
Aug 5, 2020
The Wainlux K6 is a compact, powerful, simple-to-use laser engraver. It'€™s also incredibly low-priced at around $160 for an Early Bird pledge....
Aug 5, 2020
There are some products that have become so familiar that their name has entered everyday language.  The Hoover Company became so successful in the vacuum cleaner market that its name has entered the language to describe the task they perform.  Here in the UK, many ...
Aug 5, 2020
We renamed our user conference to CadenceLIVE (from CDNLive) just in time for it not to be live and to go virtual. The first conference is CadenceLIVE Americas coming up from August 11th to 13th.... [[ Click on the title to access the full blog on the Cadence Community site....
Jul 31, 2020
[From the last episode: We looked at the notion of sparsity and how it helps with the math.] We saw before that there are three main elements in a CNN: the convolution, the pooling, and the activation . Today we focus on activation . I'€™ll start by saying that the uses of ...

featured video

Product Update: Protect IoT SoCs with DesignWare OTP NVM IP

Sponsored by Synopsys

Join Krishna Balachandran in this discussion on Synopsys DesignWare OTP NVM IP, including security, performance, power, and cost considerations. With more than 12 years of development and deployment by 500+ customers, Synopsys is the leader in antifuse-based OTP NVM IP.

Click here for more information about Synopsys DesignWare OTP NVM IP

Featured Paper

Improving Performance in High-Voltage Systems With Zero-Drift Hall-Effect Current Sensing

Sponsored by Texas Instruments

Learn how major industry trends are driving demands for isolated current sensing, and how new zero-drift Hall-effect current sensors can improve isolation and measurement drift while simplifying the design process.

Click here for more information

Featured Chalk Talk

Benefits of FPGAs & eFPGA IP in Futureproofing Compute Acceleration

Sponsored by Achronix

In the quest to accelerate and optimize today’s computing challenges such as AI inference, our system designs have to be flexible above all else. At the confluence of speed and flexibility are today’s new FPGAs and e-FPGA IP. In this episode of Chalk Talk, Amelia Dalton chats with Mike Fitton from Achronix about how to design systems to be both fast and future-proof using FPGA and e-FPGA technology.

Click here for more information about the Achronix Speedster7 FPGAs