industry news
Subscribe Now

Not Your Grandma’s Quilt

RIVERSIDE, Calif. (www.ucr.edu) — A group of researchers at the University of California, RiversideBourns College of Engineering have developed a technique to keep cool a semiconductor material used in everything from traffic lights to electric cars.

Gallium Nitride (GaN), a semiconductor material found in bright lights since the 1990s, is used in wireless applications due to its high efficiency and high voltage operation. However, the applications and market share of GaN electronics is limited because it is difficult to remove heat from them.

That could change due to a technique developed by the Nano-Device Laboratory research group led by Alexander Balandin, professor of electrical engineering and founding chair of Materials Science and Engineering program.

The research group demonstrated that hot spots in GaN transistors can be lowered by as much 20 degrees Celsius through the introduction of alternative heat-escaping channels implemented with graphene multilayers, which are excellent heat conductors. The temperature reduction translates to an increase in the lifetime of the device by a factor of 10.

“This represents a transformative change in thermal management,” Balandin said.

The new approach to thermal management of power electronics with graphene was outlined in a paper “Graphene quilts for thermal management of high-power GaN transistors” that was published May 8 in Nature Communications.

GaN transistors have been offered commercially since 2006. The problem with them, like all high power operating devices, is significant amount of dissipated heat, which has to be fast and efficiently removed. Various thermal management solutions such as flip-chip bonding or composite substrates have been attempted. However, applications have still been limited because of increases in temperature due to dissipated heat.

The breakthrough in thermal management of GaN power transistors was achieved by Balandin and three of his electrical engineering graduate students: Guanxiong Liu, Zhong Yan, both Ph.D. candidates, and Javed Khan, who earned his Ph.D. and started working at Intel Corporation this year.

Balandin – recipient of IEEE Nanotechnology Pioneer Award for 2011 – has previously discovered that graphene is an excellent heat conductor. Few-layer graphene films preserve their excellent thermal properties even when their thickness is only a few nanometers, which is unlike metal or semiconductor films. The latter makes them excellent candidates for applications as the lateral heat spreaders and interconnects.

The Balandin group researchers designed and built graphene-graphite “quilts” on top of GaN transistors. The graphene-graphite quilts’ function was to remove and spread the heat from the hot spots – the opposite of what you expect from the conventional quilts.

Using micro-Raman spectroscopic thermometry the researchers demonstrated that temperature of the hot spots can be lowered by as much 20 degrees Celsius in transistors operating at the large power levels.

The computer simulations performed by the group suggested that graphene quilts can perform even better in GaN devices on more thermally resistive substrates.

The Balandin group is also known in graphene community for their investigation of low-frequency noise in graphene transistors, development of the first large-area method for quality control of graphene and demonstration of the first selective gas sensor implemented with pristine graphene.

The work on thermal management of GaN transistors with graphene quilts was supported by the Office of Naval Research. Balandin’s research of the thermal properties of graphene was funded by the Semiconductor Research Corporation and the Defense Advanced Research Project Agency.

Leave a Reply

featured blogs
Apr 13, 2021
If a picture is worth a thousand words, a video tells you the entire story. Cadence's subsystem SoC silicon for PCI Express (PCIe) 5.0 demo video shows you how we put together the latest... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Apr 12, 2021
The Semiconductor Ecosystem- It is the definition of '€œHigh Tech'€, but it isn'€™t just about… The post Calibre and the Semiconductor Ecosystem appeared first on Design with Calibre....
Apr 8, 2021
We all know the widespread havoc that Covid-19 wreaked in 2020. While the electronics industry in general, and connectors in particular, took an initial hit, the industry rebounded in the second half of 2020 and is rolling into 2021. Travel came to an almost stand-still in 20...
Apr 7, 2021
We explore how EDA tools enable hyper-convergent IC designs, supporting the PPA and yield targets required by advanced 3DICs and SoCs used in AI and HPC. The post Why Hyper-Convergent Chip Designs Call for a New Approach to Circuit Simulation appeared first on From Silicon T...

featured video

Meeting Cloud Data Bandwidth Requirements with HPC IP

Sponsored by Synopsys

As people continue to work remotely, demands on cloud data centers have never been higher. Chip designers for high-performance computing (HPC) SoCs are looking to new and innovative IP to meet their bandwidth, capacity, and security needs.

Click here for more information

featured paper

From Chips to Ships, Solve Them All With HFSS

Sponsored by Ansys

There are virtually no limits to the design challenges that can be solved with Ansys HFSS and the new HFSS Mesh Fusion technology! Check out this blog to know what the latest innovation in HFSS 2021 can do for you.

Click here to read the blog post

Featured Chalk Talk

Digi Remote Manager

Sponsored by Mouser Electronics and Digi

With the complexity of today’s networks, the proliferation of IoT, and the increase in remote access requirements, remote management is going from “nice to have” to “critical” in network design and deployment. In this episode of Chalk Talk, Amelia Dalton chats with Stefan Budricks of Digi International about how Digi Remote Manager can address your remote management and security needs.

Click here for more information about DIGI XBee® Tools