industry news
Subscribe Now

Imec demonstrates CMOS integrated poly-SiGe piezoresistive pressure sensor

Leuven (Belgium) – October 10, 2011 – Imec realized an integrated poly-SiGe-based piezoresistive pressure sensor directly fabricated above 0.13 µm copper (Cu) -backend CMOS technology. This represents not only the first integrated poly-SiGe pressure sensor directly fabricated above its readout circuit, but also the first time that a poly-SiGe MEMS device is processed on top of Cu-backend CMOS. 

Polycrystalline SiGe has emerged as a promising MEMS structural material since it provides the desired mechanical properties at lower temperatures compared to poly-Si, allowing the post-processing on top of CMOS. The MEMS-last approach is the most interesting approach for CMOS-MEMS monolithic integration as it leads to smaller die areas and enables integrating the MEMS without introducing any changes in standard foundry CMOS processes. Comparing to alternative technologies, for example using the CMOS top interconnect layers to fabricate the MEMS device, poly-SiGe offers a more generic and flexible technology for above CMOS integration, thanks to the fact that the MEMS fabrication can be completely decoupled from the CMOS fabrication.

In the past, imec already proved the potential of poly-SiGe for MEMS above-aluminum-backend CMOS integration. However, aggressive interconnect scaling has led to the replacement of the traditional aluminum metallization by copper metallization, due to its lower resistivity and improved reliability. Our results now broaden the applications of poly-SiGe to the integration of MEMS with the advanced CMOS technology nodes.

Our integrated sensor (fully fabricated in imec) includes a surface-micromachined piezoresistive pressure sensor, with a poly-SiGe membrane and four poly-SiGe piezoresistors, and an instrumentation amplifier fabricated using imec’s 0.13 ?m standard CMOS technology, with Cu- interconnects (two metal layers), oxide dielectric and tungsten-filled vias. To enable above-CMOS integration the maximum processing temperature of the complete sensor, including the poly-SiGe piezoresistors, is kept below 455ºC. Moreover, an appropriate passivation layer was included to protect the electronic circuit from the aggressive etch and deposition steps needed to fabricate the MEMS devices. The CMOS circuit showed no significant deterioration after the MEMS processing. Despite the low processing temperature, the poly-SiGe piezoresistive sensor alone (250×250µm2 membrane) showed a sensitivity of around 2.5 mV/V/bar. The integrated sensor (same sensor + Cu-based CMOS amplifier underneath) showed a sensitivity of about 158 mV/V/bar, ~64 times higher than the stand-alone sensor.

Download the news release and photo at http://www2.imec.be/be_en/press/imec-news/imecSiGeMEMSonCUCMOS. html.

About imec

Imec performs world-leading research in nanoelectronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China, India and Japan. Its staff of about 1,900 people includes more than 500 industrial residents and guest researchers. In 2010, imec’s revenue (P&L) was 285 million euro. Further information on imec can be found at www.imec.be.

Leave a Reply

featured blogs
May 8, 2024
Learn how artificial intelligence of things (AIoT) applications at the edge rely on TSMC's N12e manufacturing processes and specialized semiconductor IP.The post How Synopsys IP and TSMC’s N12e Process are Driving AIoT appeared first on Chip Design....
May 2, 2024
I'm envisioning what one of these pieces would look like on the wall of my office. It would look awesome!...

featured video

Why Wiwynn Energy-Optimized Data Center IT Solutions Use Cadence Optimality Explorer

Sponsored by Cadence Design Systems

In the AI era, as the signal-data rate increases, the signal integrity challenges in server designs also increase. Wiwynn provides hyperscale data centers with innovative cloud IT infrastructure, bringing the best total cost of ownership (TCO), energy, and energy-itemized IT solutions from the cloud to the edge.

Learn more about how Wiwynn is developing a new methodology for PCB designs with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver.

featured paper

Achieve Greater Design Flexibility and Reduce Costs with Chiplets

Sponsored by Keysight

Chiplets are a new way to build a system-on-chips (SoCs) to improve yields and reduce costs. It partitions the chip into discrete elements and connects them with a standardized interface, enabling designers to meet performance, efficiency, power, size, and cost challenges in the 5 / 6G, artificial intelligence (AI), and virtual reality (VR) era. This white paper will discuss the shift to chiplet adoption and Keysight EDA's implementation of the communication standard (UCIe) into the Keysight Advanced Design System (ADS).

Dive into the technical details – download now.

featured chalk talk

Autonomous Robotics Connectivity Solutions
Sponsored by Mouser Electronics and Samtec
Connectivity solutions for autonomous robotic applications need to include a variety of orientations, stack heights, and contact systems. In this episode of Chalk Talk, Amelia Dalton and Matthew Burns from Samtec explore trends in autonomous robotic connectivity solutions and the benefits that Samtec interconnect solutions bring to these applications.
Jan 22, 2024
16,363 views