industry news
Subscribe Now

Design Compiler 2010 doubles productivity of synthesis and place and route

MOUNTAIN VIEW, Calif., 29th March – Synopsys, Inc. (Nasdaq:SNPS), a world leader in software and IP for semiconductor design, verification and manufacturing, today introduced Design Compiler® 2010, the latest RTL synthesis innovation within the Galaxy™ Implementation platform, which delivers a twofold speedup in the synthesis and physical implementation flow. To meet aggressive schedules for increasingly complex designs, engineers need an RTL synthesis solution that enables them to minimise iterations to speed up physical implementation. To address these challenges, topographical technology in Design Compiler 2010 is being extended to produce “physical guidance” to Synopsys’ flagship place-and-route solution, IC Compiler, tightening timing and area correlation to 5 percent while speeding up IC Compiler’s placement phase by 1.5 times (1.5X). A new capability allows RTL designers to perform floorplan exploration within the synthesis environment to efficiently achieve an optimal floorplan. Additionally, Design Compiler’s new scalable infrastructure tuned for multicore processors yields 2X faster synthesis runtimes on four cores. These new Design Compiler 2010 productivity improvements will be highlighted today by users at the Synopsys Users Group (SNUG) meeting in San Jose, California.

“Cutting design time and improving design performance are essential to keep our competitiveness in the marketplace,” said Hitoshi Sugihara, department manager, DFM & Digital EDA Technology Development at Renesas Technology Corp. “With the new physical guidance extension to topographical technology we are seeing 5 percent correlation between Design Compiler and IC Compiler, up to 2X faster placement in IC Compiler and better design timing. We are adopting the new technology innovations in Design Compiler to minimise iterations while meeting our design goals in shorter timeframes.”

To alleviate today’s immense time-to-market pressures, Design Compiler 2010 extends topographical technology to further optimise its links with IC Compiler, tightening correlation down to 5 percent. Additional physical optimisation techniques are applied during synthesis, and physical guidance is created and passed to IC Compiler, streamlining the flow and speeding up placement in IC Compiler by 1.5X. Design Compiler 2010 also provides RTL designers access to IC Compiler’s floorplanning capabilities from within the synthesis environment. With the push of a button, designers can perform what-if floorplan exploration, enabling them to identify and fix floorplan issues early and achieve faster design convergence.

“For the last few years, we have used Design Compiler’s Topographical technology to find and fix design issues during synthesis to give us predictable implementation,” said Shih-Arn Hwang, Deputy Director R&D Center at Realtek. “We see Design Compiler 2010 synthesis results closely correlating to physical results, while accelerating placement in IC Compiler by 1.5X. This tight correlation between synthesis and layout, along with faster runtimes, is exactly what we need for reducing iterations and significantly shortening design schedules in 65 nanometer and smaller process technologies.”

Design Compiler 2010 includes a new, scalable infrastructure designed to deliver significant runtime speedup on multicore compute servers. It employs an optimised scheme of distributed and multithreaded parallelisation techniques, delivering an average of 2X faster runtime on quad-core compute servers while achieving zero deviation of the synthesis results.

“We’ve focused Design Compiler improvements on helping designers shorten design cycles and improve productivity,” said Antun Domic, senior vice president and general manager, Synopsys Implementation Group. “Since the introduction of topographical technology, the impact of logic synthesis on accelerating design closure with physical implementation has grown significantly. Design Compiler 2010 continues this trend, delivering a significant decrease in iterations and reducing run times in physical implementation. We have achieved this while dramatically updating our software infrastructure to best utilise the latest microprocessor architectures.”

About Synopsys

Synopsys, Inc. (Nasdaq: SNPS) is a world leader in electronic design automation (EDA), supplying the global electronics market with the software, intellectual property (IP) and services used in semiconductor design, verification and manufacturing. Synopsys’ comprehensive, integrated portfolio of implementation, verification, IP, manufacturing and field-programmable gate array (FPGA) solutions helps address the key challenges designers and manufacturers face today, such as power and yield management, software-to-silicon verification and time-to-results. These technology-leading solutions help give Synopsys customers a competitive edge in bringing the best products to market quickly while reducing costs and schedule risk. Synopsys is headquartered in Mountain View, California, and has more than 65 offices located throughout North America, Europe, Japan, Asia and India. Visit Synopsys online athttp://www.synopsys.com/.

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 24, 2024
Learn about maskless electron beam lithography and see how Multibeam's industry-first e-beam semiconductor lithography system leverages Synopsys software.The post Synopsys and Multibeam Accelerate Innovation with First Production-Ready E-Beam Lithography System appeared fir...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Shift Left with Calibre
In this episode of Chalk Talk, Amelia Dalton and David Abercrombie from Siemens investigate the details of Calibre’s shift-left strategy. They take a closer look at how the tools and techniques in this design tool suite can help reduce signoff iterations and time to tapeout while also increasing design quality.
Nov 27, 2023
20,180 views