fresh bytes
Subscribe Now

Scientists have created a lightweight wearable that dissolves in vinegar

This wearable electronic device melts to nothing if you pour vinegar on it — and that’s by design. With 50 million metric ton of electronic waste projected for 2018, scientists at Stanford University created a biodegradable wearable that wouldn’t sit in the junk drawer or junkyard for the rest of eternity, once the next generation of FitBit came along.

Continue reading at The Verge

Photograph by the Bao lab

Leave a Reply

featured blogs
Jan 22, 2021
Amidst an ongoing worldwide pandemic, Samtec continues to connect with our communities. As a digital technology company, we understand the challenges and how uncertain times have been for everyone. In early 2020, Samtec Cares suspended its normal grant cycle and concentrated ...
Jan 22, 2021
I was recently introduced to the concept of a tray that quickly and easily attaches to your car'€™s steering wheel (not while you are driving, of course). What a good idea!...
Jan 22, 2021
This is my second post about this year's CES. The first was Consumer Electronics Show 2021: GM, Intel . AMD The second day of CES opened with Lisa Su, AMD's CEO, presenting. AMD announced new... [[ Click on the title to access the full blog on the Cadence Community...
Jan 20, 2021
Explore how EDA tools & proven IP accelerate the automotive design process and ensure compliance with Automotive Safety Integrity Levels & ISO requirements. The post How EDA Tools and IP Support Automotive Functional Safety Compliance appeared first on From Silicon...

featured paper

Overcoming Signal Integrity Challenges of 112G Connections on PCB

Sponsored by Cadence Design Systems

One big challenge with 112G SerDes is handling signal integrity (SI) issues. By the time the signal winds its way from the transmitter on one chip to packages, across traces on PCBs, through connectors or cables, and arrives at the receiver, the signal is very distorted, making it a challenge to recover the clock and data-bits of the information being transferred. Learn how to handle SI issues and ensure that data is faithfully transmitted with a very low bit error rate (BER).

Click here to download the whitepaper

Featured Chalk Talk

Bulk Acoustic Wave (BAW) Technology

Sponsored by Mouser Electronics and Texas Instruments

In industrial applications, crystals are not ideal for generating clock signal timing. They take up valuable PCB real-estate, and aren’t stable in harsh thermal and vibration environments. In this episode of Chalk Talk, Amelia Dalton chats with Nick Smith from Texas Instruments about bulk acoustic wave (BAW) technology that offers an attractive alternative to crystals.

More information about Texas Instruments Bulk Acoustic Wave (BAW) Technology