fresh bytes
Subscribe Now

Parasitic robot steers live turtle with tasty snacks

It’s going to be a long, long time before we have amphibious robots that are anywhere near as capable as the mighty and majestic turtle. While many roboticists are working diligently on TurtleBots of all kinds, researchers at the Korea Advanced Institute of Science and Technology (KAIST) have taken things much more literally with the development of a robot-turtle hybrid: a “parasitic robot,” as they call it, that lives on the back of a real turtle, guiding the animal from place to place with the aid of an array of LEDs coupled with positive reinforcement from tasty turtle snacks.

Continue reading at IEEE Spectrum

Image: KAIST

Leave a Reply

featured blogs
May 27, 2020
Could life evolve on ice worlds, ocean worlds, ocean worlds covered in ice, halo worlds that are tidally locked with their sun, and rogue worlds without a sun? If so, what sort of life might it be?...
May 26, 2020
I get pleasure from good quality things. Quality is a vague term, but, to me, it is some combination of good design for usability, functionality and aesthetics, along with reliability and durability. Some of these factors can be assessed very quickly; others take time. For ex...
May 26, 2020
#robotcombat #combatrobots #robotwars #WeWantSeason5 #WeGotSeason5 These are some of the most popular hashtags used by a growing number of global BattleBots enthusiasts. Teams from all backgrounds design, build and test robots of all sizes for one purpose in mind: Robot Comba...
May 22, 2020
[From the last episode: We looked at the complexities of cache in a multicore processor.] OK, time for a breather and for some review. We'€™ve taken quite the tour of computing, both in an IoT device (or even a laptop) and in the cloud. Here are some basic things we looked ...

Featured Video

DesignWare 112G Ethernet PHY IP Insertion Loss Capabilities

Sponsored by Synopsys

This video shows the performance results of the Synopsys 112G PHY receiver to varying amounts of channel insertion loss. The IP meets the standards requirements. With leading power, performance, and area, the IP is available in a range of FinFET processes for high-performance.

Click here for more information

Featured Paper

Actuator Design Trends for Functional Safety Systems in Electric and Autonomous Vehicles

Sponsored by Texas Instruments

Four automotive trends – connected, autonomous, shared and electric, also known as CASE – are driving some of the most exciting automotive developments right now. This white paper focuses on the impact of CASE trends on electrically actuated systems and how designers can meet the needs of evolving functional safety systems.

Click here to download the whitepaper