fresh bytes
Subscribe Now

Nobel Prize for Physics awarded to gravitational wave scientists

The 2017 winners of the Nobel Prize for Physics were announced today. One half of the prize will go to Ranier Weiss from MIT, while the other half is being awarded jointly to Barry C. Barish and Kip S. Thorne, both from Caltech. The three scientists worked on gravitational wave observation, collaborating between the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo, its European counterpart. The prize was awarded “for decisive contributions to the LIGO detector and the observation of gravitational waves,” according to the Nobel Prize website.

Continue reading at Engadget

Image: NASA NASA / Reuters

Leave a Reply

featured blogs
May 24, 2022
By Melika Roshandell Today's modern electronic designs require ever more functionality and performance to meet consumer demand. These requirements make scaling traditional, flat, 2D-ICs very... ...
May 24, 2022
Nicholas Temese, who hails from Quebec, Canada, creates highly detailed handcrafted miniature scale models of classic computers from yesteryear....
May 24, 2022
By Neel Natekar Radio frequency (RF) circuitry is an essential component of many of the critical applications we now rely… ...
May 19, 2022
Learn about the AI chip design breakthroughs and case studies discussed at SNUG Silicon Valley 2022, including autonomous PPA optimization using DSO.ai. The post Key Highlights from SNUG 2022: AI Is Fast Forwarding Chip Design appeared first on From Silicon To Software....

featured video

EdgeQ Creates Big Connections with a Small Chip

Sponsored by Cadence Design Systems

Find out how EdgeQ delivered the world’s first 5G base station on a chip using Cadence’s logic simulation, digital implementation, timing and power signoff, synthesis, and physical verification signoff tools.

Click here for more information

featured paper

5 common Hall-effect sensor myths

Sponsored by Texas Instruments

Hall-effect sensors can be used in a variety of automotive and industrial systems. Higher system performance requirements created the need for improved accuracy and more integration – extending the use of Hall-effect sensors. Read this article to learn about common Hall-effect sensor misconceptions and see how these sensors can be used in real-world applications.

Click to read more

featured chalk talk

Simplifying Brushless Motor Controls with Toshiba Motor Control Solutions

Sponsored by Mouser Electronics and Toshiba

Making sure your motor control design is efficient and ready for primetime can be a complicated process. In this episode of Chalk Talk, Amelia Dalton chats with Alan Li from Toshiba about the basics of brushless motor control, more advanced variables including lead angle control and intelligent phase control and most importantly, how you can simplify your next brushless motor control design.

Click here for more information about Toshiba Brushless Motor Driver ICs