fresh bytes
Subscribe Now

MIT fires a rocket motor made using 3D-printed plastic

If you’re going to 3D-print rocket parts, you’d want to make them out of metal to handle the stress, right? Not necessarily. MIT has successfully test-fired what it believes is the first completely 3D-printed rocket motor to be made with plastic casing. That’s right — an all too easily melted material was sitting a virtual hair’s breadth away from super-hot propellant. It sounds like a recipe for disaster, but apparently it worked well — it generated real thrust, and there was only a small amount of damage to the motor’s throat after the initial run. A second test didn’t fare so well (it would be useless for moving anything), but MIT hadn’t intended for the motor to fire more than once.

Continue reading on Engadget

Image: MIT

Leave a Reply

featured blogs
Jul 8, 2020
Through our Pricing and Delivery tool in My Samtec, customers could always access their customer-specific pricing by logging in and entering a part number. However that functionality came with the limitation of having to navigate to a separate part of the website to see that ...
Jul 6, 2020
If you were in the possession of one of these bodacious beauties, what sorts of games and effects would you create using the little scamp?...
Jul 3, 2020
[From the last episode: We looked at CNNs for vision as well as other neural networks for other applications.] We'€™re going to take a quick detour into math today. For those of you that have done advanced math, this may be a review, or it might even seem to be talking down...

featured video

Product Update: DesignWare MIPI C-PHY/D-PHY IP

Sponsored by Synopsys

Get the latest update on Synopsys' DesignWare MIPI C-PHY/D-PHY IP solution and how the 24 Gbps total bandwidth can enable your camera, display, automotive, drone, and image sensor SoCs implemented in advanced FinFET processes.

Click here for more information about Synopsys' DesignWare MIPI C-PHY/D-PHY IP solution

Featured Paper

Cryptography: Fundamentals on the Modern Approach

Sponsored by Maxim Integrated

Learn about the fundamental concepts behind modern cryptography, including how symmetric and asymmetric keys work to achieve confidentiality, identification and authentication, integrity, and non-repudiation.

Click here to download the whitepaper

Featured Chalk Talk

Demystifying Wireless! Key Considerations for Adding Wireless to Your IoT Solution

Sponsored by Mouser Electronics and Digi

Adding wireless connectivity to your IoT design can be a major challenge in an already-crowded schedule. And, doing it as an afterthought can cause all kinds of trouble. In this episode of Chalk Talk, Amelia Dalton chats with Andrew Reiter from Digi International about a holistic approach to designing wireless connected designs.

Click here for more information about Digi International XBee® XBIB-C Development Boards