fresh bytes
Subscribe Now

MIT fires a rocket motor made using 3D-printed plastic

If you’re going to 3D-print rocket parts, you’d want to make them out of metal to handle the stress, right? Not necessarily. MIT has successfully test-fired what it believes is the first completely 3D-printed rocket motor to be made with plastic casing. That’s right — an all too easily melted material was sitting a virtual hair’s breadth away from super-hot propellant. It sounds like a recipe for disaster, but apparently it worked well — it generated real thrust, and there was only a small amount of damage to the motor’s throat after the initial run. A second test didn’t fare so well (it would be useless for moving anything), but MIT hadn’t intended for the motor to fire more than once.

Continue reading on Engadget

Image: MIT

Leave a Reply

featured blogs
Mar 5, 2021
Design companies often work with multiple PCB fabricators and each fabricator may have a different set of DFM rules. It is a customary practice followed by design companies to create a common... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Mar 4, 2021
Like so many things, I started off by saying '€œOoh, Shiny!'€ But I ended up thinking, '€œJust a minute, how does that actually work in the real world?'€...
Mar 4, 2021
3D ICs help SoC designers extend the design scale beyond Moore's Law; learn how unified 3D IC design tools enable faster convergence for multi-die chips. The post Onward and Upward: Enhancing 3DIC Design Productivity with a Unified Platform appeared first on From Silicon To ...
Mar 3, 2021
In grade school, we had timed math quizzes. With a sheet full of problems and the timer set, the goal was to answer as many as possible. The key to speed is TONS of practice and, honestly, memorization '€“ knowing the problems so well that the answer comes to mind at first ...

featured paper

Ultra Portable IO On The Go

Sponsored by Maxim Integrated

The Go-IO programmable logic controller (PLC) reference design (MAXREFDES212) consists of multiple software configurable IOs in a compact form factor (less than 1 cubic inch) to address the needs of industrial automation, building automation, and industrial robotics. Go-IO provides design engineers with the means to rapidly create and prototype new industrial control systems before they are sourced and constructed.

Click here to download the whitepaper

Featured Chalk Talk

uPOL Technology

Sponsored by Mouser Electronics and TDK

Power modules are a superior solution for many system designs. Their small form factor, high efficiency, ease of design-in, and solid reliability make them a great solution in a wide range of applications. In this episode of Chalk Talk, Amelia Dalton chats with Tony Ochoa of TDK about the new uPOL family of power modules and how they can deliver the power in your next design.

Click here for more information about TDK FS1406 µPOL™ DC-DC Power Modules