fresh bytes
Subscribe Now

An AI ‘nose’ can remember different scents

Russian researchers are using deep learning neural networks to sniff out potential scent-based threats. The technique is a bit dense (as anything with neural nets tends to be), but the gist is that the electronic “nose” can remember new smells and recognize them after the fact.

When the sensor detects a smell, an AI takes over and checks it against a database of known scents for “the closest similar smell determined by the smallest Hamming distance to any know code,” HSE writes. If it can’t find a match, the sensor will identify the scent as being new.

Continue reading at Engadget

Image: Kali Nine LLC

Leave a Reply

featured blogs
Sep 21, 2021
Learn how our high-performance FPGA prototyping tools enable RTL debug for chip validation teams, eliminating simulation/emulation during hardware debugging. The post High Debug Productivity Is the FPGA Prototyping Game Changer: Part 1 appeared first on From Silicon To Softw...
Sep 20, 2021
As it seems to be becoming a (bad) habit, This Week in CFD is presented here as Last Week in CFD. But that doesn't make the news any less relevant. Great article on wind tunnels because they go... [[ Click on the title to access the full blog on the Cadence Community si...
Sep 18, 2021
Projects with a steampunk look-and-feel incorporate retro-futuristic technology and aesthetics inspired by 19th-century industrial steam-powered machinery....
Aug 5, 2021
Megh Computing's Video Analytics Solution (VAS) portfolio implements a flexible and scalable video analytics pipeline consisting of the following elements: Video Ingestion Video Transformation Object Detection and Inference Video Analytics Visualization   Because Megh's ...

featured video

Enter the InnovateFPGA Design Contest to Solve Real-World Sustainability Problems

Sponsored by Intel

The Global Environment Facility (GEF) Small Grants Programme, implemented by the U.N. Development Program, is collaborating with the #InnovateFPGA contest to support 7 funded projects that are looking for technical solutions in biodiversity, sustainable agriculture, and marine conservation. Contestants have access to the Intel® Cyclone® V SoC FPGA in the Cloud Connectivity Kit, Analog Devices plug-in boards, and Microsoft Azure IoT.

Learn more about the contest and enter here by September 30, 2021

featured paper

Configure the charge and discharge current separately in a reversible buck/boost regulator

Sponsored by Maxim Integrated (now part of Analog Devices)

The design of a front-end converter can be made less complicated when minimal extra current overhead is required for charging the supercapacitor. This application note explains how to configure the reversible buck/boost converter to achieve a lighter impact on the system during the charging phase. Setting the charge current requirement to the minimum amount keeps the discharge current availability intact.

Click to read more

featured chalk talk

IEC 62368-1 Overvoltage Requirements

Sponsored by Mouser Electronics and Littelfuse

Over-voltage protection is an often neglected and misunderstood part of system design. But often, otherwise well-engineered devices are brought down by over-voltage events. In this episode of Chalk Talk, Amelia Dalton chats with Todd Phillips of Littelfuse about the new IEC 623689-1 standard, what tests are included in the standard, and how the standard allows for greater safety and design flexibility.

Click here for more information about Littelfuse IEC 62368-1 Products