editor's blog
Subscribe Now

Analog Roosters Taking Digital Drinks

It’s tough not being a domain specialist at times. You get hit by scary-sounding jargon that you mostly hope you can evade without having to parse and understand it. And none sounds more imposing than the thing that came up in the wind sensor article, the delta-sigma modulator

That sounds like one of two things: some top-secret military weapon that will do things to you that you really don’t want to think about or the guy pouring beer at a frat

Well, it’s neither.

It’s a way of adding precision to data in a noisy environment. The goal is to encode data as a pulse train. The more frequent the pulse (or the higher the “pulse density”), the higher the “amplitude” of the signal. 

Think of some poor dude at an old telegraph office providing an ongoing report of the local temperature. Let’s say that, if the temperature is 0, he sends one pulse per hour, and, if the temperature is 60, he sends one per minute. For any other temperature, he clicks at the appropriate proportional rate. Well, he’s pulse-coded the temperature data; the guy at the other end can then figure out the temperature by counting the frequency of clicks.

The idea is that the information being transmitted is in the very low frequency band (as compared to the frequencies involved in generating the pulses). The noisy stuff is all in the high frequencies. So whoever receives this pulse train can apply a low-pass filter to retrieve the data and discard the noise. 

Not sure if that lonely guy listening to the telegraph clicks will appreciate being called a low-pass filter.

The concept of taking noise in a measurement and, effectively, moving it into a higher frequency band than the underlying data has the awesome-sounding name “noise shaping.”

Given that concept, do you encode the data? If you look at some of the descriptions of ΔΣ modulators, you’d be forgiven for immediately throwing up your hands: some people immediately revert to arcane math in an attempt either to be more precise than necessary, look smart, or scare away anyone trying to invade their turf. Or all of the above. (OK, precision is good, but it’s best after you know the rough concepts.)

And, for this, there’s a really simple analog. Have you ever seen those garden water features with a rooster or some other bird that periodically dips its head in the water? That’s a ΔΣ modulator. Of sorts.

Those things generally work on some variation of the following: a flow of water gradually fills some kind of vessel, and, when the vessel reaches a certain point, it tips, and the bird takes a drink. After the water empties out (due to the tipping), it starts over. 

Usually this just goes on at a constant rate. But you can imagine that, if the flow of water were increasing and decreasing, it would take the vessel a different amount of time to fill, and so the bird would tip more frequently with faster flow and less frequently with slower flow.

(It occurs to me that we could conjoin this analogy with the earlier fraternity suspicion by doing things like replacing the vessel with a beer bong, watching the frat guy eventually tip over, etc. But I’ll leave that for you to work out.)

And that’s how a ΔΣ modulator works. Except that, instead of water and a vessel and a bird, you have a voltage driving an integrator (which slowly fills), which drives a comparator, which, when a threshold is reached, sends out a pulse. The higher the voltage, the faster the integrator “fills up,” and the more frequent the pulses. 

The pulse is also fed back via a one-bit DAC to be subtracted out of the input to the integrator – this is the step that effectively drains the vessel so it can start over.

You can get fancy by adding another integrator; this is a 2nd-order modulator, which has less noise. (Almost seems like double-buffering to ward off metastability.) And, in fact, you can keep adding integrators to get an nth-order modulator (except that, apparently, if you just do that willy-nilly, you’re going to have some instability issues beyond 3rd-order).

And yes: for precision, you can go to the math. There’s lots of it.

I sort of prefer the pastoral garden image.

I guess that’s why I’m not actually designing these things.

Leave a Reply

featured blogs
Apr 25, 2024
Cadence's seven -year partnership with'¯ Team4Tech '¯has given our employees unique opportunities to harness the power of technology and engage in a three -month philanthropic project to improve the livelihood of communities in need. In Fall 2023, this partnership allowed C...
Apr 24, 2024
Learn about maskless electron beam lithography and see how Multibeam's industry-first e-beam semiconductor lithography system leverages Synopsys software.The post Synopsys and Multibeam Accelerate Innovation with First Production-Ready E-Beam Lithography System appeared fir...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Autonomous Mobile Robots
Sponsored by Mouser Electronics and onsemi
Robotic applications are now commonplace in a variety of segments in society and are growing in number each day. In this episode of Chalk Talk, Amelia Dalton and Alessandro Maggioni from onsemi discuss the details, functions, and benefits of autonomous mobile robots. They also examine the performance parameters of these kinds of robotic designs, the five main subsystems included in autonomous mobile robots, and how onsemi is furthering innovation in this arena.
Jan 24, 2024
13,245 views