editor's blog
Subscribe Now

Analog Roosters Taking Digital Drinks

It’s tough not being a domain specialist at times. You get hit by scary-sounding jargon that you mostly hope you can evade without having to parse and understand it. And none sounds more imposing than the thing that came up in the wind sensor article, the delta-sigma modulator

That sounds like one of two things: some top-secret military weapon that will do things to you that you really don’t want to think about or the guy pouring beer at a frat

Well, it’s neither.

It’s a way of adding precision to data in a noisy environment. The goal is to encode data as a pulse train. The more frequent the pulse (or the higher the “pulse density”), the higher the “amplitude” of the signal. 

Think of some poor dude at an old telegraph office providing an ongoing report of the local temperature. Let’s say that, if the temperature is 0, he sends one pulse per hour, and, if the temperature is 60, he sends one per minute. For any other temperature, he clicks at the appropriate proportional rate. Well, he’s pulse-coded the temperature data; the guy at the other end can then figure out the temperature by counting the frequency of clicks.

The idea is that the information being transmitted is in the very low frequency band (as compared to the frequencies involved in generating the pulses). The noisy stuff is all in the high frequencies. So whoever receives this pulse train can apply a low-pass filter to retrieve the data and discard the noise. 

Not sure if that lonely guy listening to the telegraph clicks will appreciate being called a low-pass filter.

The concept of taking noise in a measurement and, effectively, moving it into a higher frequency band than the underlying data has the awesome-sounding name “noise shaping.”

Given that concept, do you encode the data? If you look at some of the descriptions of ΔΣ modulators, you’d be forgiven for immediately throwing up your hands: some people immediately revert to arcane math in an attempt either to be more precise than necessary, look smart, or scare away anyone trying to invade their turf. Or all of the above. (OK, precision is good, but it’s best after you know the rough concepts.)

And, for this, there’s a really simple analog. Have you ever seen those garden water features with a rooster or some other bird that periodically dips its head in the water? That’s a ΔΣ modulator. Of sorts.

Those things generally work on some variation of the following: a flow of water gradually fills some kind of vessel, and, when the vessel reaches a certain point, it tips, and the bird takes a drink. After the water empties out (due to the tipping), it starts over. 

Usually this just goes on at a constant rate. But you can imagine that, if the flow of water were increasing and decreasing, it would take the vessel a different amount of time to fill, and so the bird would tip more frequently with faster flow and less frequently with slower flow.

(It occurs to me that we could conjoin this analogy with the earlier fraternity suspicion by doing things like replacing the vessel with a beer bong, watching the frat guy eventually tip over, etc. But I’ll leave that for you to work out.)

And that’s how a ΔΣ modulator works. Except that, instead of water and a vessel and a bird, you have a voltage driving an integrator (which slowly fills), which drives a comparator, which, when a threshold is reached, sends out a pulse. The higher the voltage, the faster the integrator “fills up,” and the more frequent the pulses. 

The pulse is also fed back via a one-bit DAC to be subtracted out of the input to the integrator – this is the step that effectively drains the vessel so it can start over.

You can get fancy by adding another integrator; this is a 2nd-order modulator, which has less noise. (Almost seems like double-buffering to ward off metastability.) And, in fact, you can keep adding integrators to get an nth-order modulator (except that, apparently, if you just do that willy-nilly, you’re going to have some instability issues beyond 3rd-order).

And yes: for precision, you can go to the math. There’s lots of it.

I sort of prefer the pastoral garden image.

I guess that’s why I’m not actually designing these things.

Leave a Reply

featured blogs
Dec 7, 2023
Building on the success of previous years, the 2024 edition of the DATE (Design, Automation and Test in Europe) conference will once again include the Young People Programme. The largest electronic design automation (EDA) conference in Europe, DATE will be held on 25-27 March...
Dec 7, 2023
Explore the different memory technologies at the heart of AI SoC memory architecture and learn about the advantages of SRAM, ReRAM, MRAM, and beyond.The post The Importance of Memory Architecture for AI SoCs appeared first on Chip Design....
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured paper

Universal Verification Methodology Coverage for Bluespec RISC-V Cores

Sponsored by Synopsys

This whitepaper explains the basics of UVM functional coverage for RISC-V cores using the Google RISCV-DV open-source project, Synopsys verification solutions, and a RISC-V processor core from Bluespec.

Click to read more

featured chalk talk

Energy Storage Systems
Increasing electric vehicle sales, decreasing battery sales, and a shift in energy consumption has made energy storage systems more important than ever before. In this episode of Chalk Talk, Amelia Dalton chats with Gijs Werner from Amphenol FCI Basics about the functions and components involved in commercial energy storage systems, residential energy storage systems and EV charging stations. They investigate the qualifications needed for connectors in energy storage systems and what kind of connectors Amphenol FCI Basics offers for your next energy storage system design.
Apr 3, 2023
29,375 views