fish fry
Subscribe Now

Making Tesla Proud

OneTesla Makes Your (Singing) Tesla Coil Dreams Come True

It’s creepy! It’s crawly. It occasionally has scales! It’s Amelia’s Weekly Fish Fry! This week we are celebrating one of the coolest (and one might say, creepiest) scientists, electrical engineers, and visionaries the world has ever seen — Nikola Tesla. My guest this week is physicist Heidi Baumgartner. She can run a nuclear reactor, she can teach soldering, and most importantly for today’s broadcast, she is one of the founders of OneTesla. Heidi is here to explain exactly how you can build your very own singing Tesla coil, how she became involved with OneTesla, and what it’s like to vacation at Chernobyl. Also this week, we check out why 8-bit shouldn’t be thrown out like last year’s Halloween candy.

 

 

Download this episode (right click and save)

Links for October 31, 2014

More information about onetesla

New Episode of Chalk Talk: Function Enablement with 8-bit PIC Microcontrollers

Leave a Reply

featured blogs
Jun 30, 2022
Learn how AI-powered cameras and neural network image processing enable everything from smartphone portraits to machine vision and automotive safety features. The post How AI Helps Cameras See More Clearly appeared first on From Silicon To Software....
Jun 30, 2022
The Team RF "μWaveRiders" blog series is a showcase for Cadence AWR RF products. Monthly topics will vary between Cadence AWR Design Environment release highlights, feature videos, Cadence... ...
Jun 28, 2022
Watching this video caused me to wander off into the weeds looking at a weird and wonderful collection of wheeled implementations....

featured video

Demo: Achronix Speedster7t 2D NoC vs. Traditional FPGA Routing

Sponsored by Achronix

This demonstration compares an FPGA design utilizing Achronix Speedster7t 2D Network on Chip (NoC) for routing signals with the FPGA device, versus using traditional FPGA routing. The 2D NoC provides a 40% reduction in logic resources required with 40% less compile time needed versus using traditional FPGA routing. Speedster7t FPGAs are optimized for high-bandwidth workloads and eliminate the performance bottlenecks associated with traditional FPGAs.

Subscribe to Achronix's YouTube channel for the latest videos on how to accelerate your data using FPGAs and eFPGA IP

featured paper

Integrating multiple functions within a housekeeping MSP430 microcontroller

Sponsored by Texas Instruments

Adding a small, low-cost microcontroller (MCU) for simple housekeeping functions can benefit many board designs. This housekeeping (or secondary) MCU is not the main host processor in the system, but it can handle several important system-level functions such as LED control or input/output (I/O) expansion. This article will explain how integrating a multifunction housekeeping MCU in your system can help lower bill-of-materials (BOM) costs, save board space, and best of all simplify your design.

Click to read more

featured chalk talk

Mission Critical Electrical Controls

Sponsored by Mouser Electronics and Littelfuse

If you are working on a mission-critical design, there is a very important list of requirements that you will need to consider for your electromechanical controls including how well they have been tested, availability of inventory, and the quality of the components. In this episode of Chalk Talk, Amelia Dalton chats with John Saathoff from Littelfuse electromechanical solutions offered by Hartland Controls, the benefits Hartland brings to the table when it comes to mission-critical designs, and how you can get started using Hartland Controls for your next design.

Click here for more information about Hartland Controls from Littelfuse