industry news
Subscribe Now

Power at Sea: Towards High-Performance Seawater Batteries

Scientists develop an efficient synthesis route to produce a novel co-doped anode material for rechargeable seawater batteries
Despite the many potential applications of seawater batteries (SWBs), the limited performance of available materials has hindered their commercialization. To tackle this issue, scientists from Korea Maritime and Ocean University have developed a novel co-doped carbon material for the anode of SWBs. Their straightforward synthesis route and the high performance of the developed anode material will pave the way for the widespread adoption of SWBs, which are safer and less expensive than lithium-ion batteries.
 
Lithium-ion batteries have taken the world by storm thanks to their remarkable properties. However, the scarcity and high cost of lithium has led researchers to look for alternative types of rechargeable batteries made using more abundant materials, such as sodium. One particularly promising type of sodium-based battery is seawater batteries (SWBs), which use seawater as the cathode.
Though SWBs are environmentally benign and naturally firesafe, the development of high-performance anode materials at a reasonable cost remains a major bottleneck that prevents commercialization. Traditional carbon-based materials are an attractive and cost-efficient option, but they have to be co-doped with multiple elements, such as nitrogen (N) and sulfur (S), to boost their performance up to par. Unfortunately, currently known synthesis routes for co-doping are complex, potentially dangerous, and don’t even yield acceptable doping levels.
In a recent study, a team of scientists from Korea Maritime and Ocean University led by Associate Professor Jun Kang have found a way out of this conundrum. Their paper, which was made available online on December 22, 2021 and published in Volume 189 of Carbon on April 15, 2022, describes a novel synthesis route to obtain N/S co-doped carbon for SWB anodes.
Termed ‘plasma in liquid,’ their procedure involves preparing a mixture of precursors containing carbon, N, and S and discharging plasma into the solution. The result is a material with high doping levels of N and S with a structural backbone of carbon black. As proved through various experiments, this material showed great potential for SWBs, as Dr. Kang remarks: “The co-doped anode material we prepared exhibited remarkable electrochemical performance in SWBs, with a cycling life of more than 1500 cycles at a current density of 10 A/g.
The potential maritime applications of SWBs are many, since they can be safely operated while completely submerged in seawater. They can be used to supply emergency power in coastal nuclear power plants, which is difficult when using conventional diesel generators in the event of a disastrous tsunami. Additionally, they can be installed on buoys to aid in navigation and fishing. Perhaps most importantly, SWBs could be literally life-saving, as Dr. Kang explains: “SWBs can be installed as a power source for salvage equipment on passenger ships. They would not only supply a higher energy density than conventional primary batteries, but also enable stable operation in water, thereby increasing survival probabilities.
Overall, this novel synthesis method for co-doped carbon anodes might just be the answer we need to make SWBs reach new heights!

Leave a Reply

featured blogs
Apr 26, 2024
LEGO ® is the world's most famous toy brand. The experience of playing with these toys has endured over the years because of the innumerable possibilities they allow us: from simple textbook models to wherever our imagination might take us. We have always been driven by ...
Apr 26, 2024
Biological-inspired developments result in LEDs that are 55% brighter, but 55% brighter than what?...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Accessing AWS IoT Services Securely over LTE-M
Developing a connected IoT design from scratch can be a complicated endeavor. In this episode of Chalk Talk, Amelia Dalton, Harald Kröll from u-blox, Lucio Di Jasio from AWS, and Rob Reynolds from SparkFun Electronics examine the details of the AWS IoT ExpressLink SARA-R5 starter kit. They explore the common IoT development design challenges that AWS IoT ExpressLink SARA-R5 starter kit is looking to solve and how you can get started using this kit in your next connected IoT design.
Oct 26, 2023
23,799 views