editor's blog
Subscribe Now

New MEMS Oscillators

Quartz is under attack yet again. While some folks are bringing quartz into non-timing applications, others are trying to squeeze it out of its primary application: timing.

Sand 9 is the latest such company, having just debuted their basic platform. They point to some fundamental limitations of quartz as a material, limitations we’ve lived with for a long time. Issues they highlight in particular are vulnerabilities due to vibration and shock, degradation at high temperatures and frequencies, issues with rapid temperature dips, inconsistencies between suppliers, and something called “activity dips.”

These latter sound really obscure – and yet Sand 9 say that they constitute the cause of 0.5% of all cell phone failures. The problem occurs when secondary vibration modes move around due to stresses and temperature – and they move in a way that’s different from the fundamental. So those modes may actually cross the fundamental, causing what Sand 9 refer to as a “heart attack.”

Their solution to this is a silicon-based one – and they had to deal with the problem that silicon on its own has much worse temperature performance than quartz does (3000 ppm vs. 20 ppm). That’s because silicon softens as temperature goes up. But, conveniently, SiO2 gets stiffer with higher temperature – so they have brought the two together in a sandwich to counteract each other, giving stability of less than 200 ppm.

So they have a six-layer stack: on top is the inter-digitated transducer, which acts as a top electrode and gets the whole thing oscillating. This overlays a layer of AlN, which sits atop the bottom electrode. Below those are relatively thick layers: a sandwich of oxide/silicon/oxide that provides temperature stability.

From a product standpoint, they’ve announced two families and hinted at an upcoming third.

  • The simplest one, the MR family, is just a resonator targeted primarily at Internet of Things devices communicating via Bluetooth Smart.
  • The second is the TSMR family. The “TS” stands for “temperature sensing”; it has a built-in heater and temperature sensor for use in the factory in calibrating and dialing up compensation. The target is cell phones.
  • Hinted at is a future TSMO (O for Oscillator) family that will have a silicon cap with an integrated oscillator circuit. Also targeted at cell phones.

All of them are provided in wafer-level chip-scale packaging (WLSCP) for integration into systems-in-package (SiP) assemblies. They claim no activity dips or susceptibility to vibration (> 10-10/G) or shock (30,000 G) and excellent phase noise performance.

You can find out more in their announcement.

Leave a Reply

featured blogs
Jul 17, 2025
Why do the links in Outlook emails always open in the Microsoft Edge web browser, even if you have another browser set as your default?...

featured paper

Maximize Power Efficiency in Embedded Applications with Agilex™ 5 E-Series FPGAs and SoCs Memory Solutions

Sponsored by Altera

Learn how Altera Agilex™ 5 FPGAs and SoCs deliver up to 1.9× lower system power than Zynq UltraScale+ without sacrificing performance. This white paper dives into real benchmark data, memory interface efficiency, and architectural advantages that make Agilex 5 the smart choice for embedded, vision, and AI edge applications. Optimize for power, performance, and design simplicity.

Click to read more

featured chalk talk

Reliability: Basics & Grades
Reliability is cornerstone to all electronic designs today, but how reliability is implemented and determined can vary widely by different market segments. In this episode of Chalk Talk, Amelia Dalton and Sam Accardo from the YAGEO Group explore the definition of reliability for electronic components, investigate the different grades of reliability offered by the YAGEO Group and the various steps that the YAGEO Group is taking to ensure the greatest reliability of their components.
Aug 15, 2024
53,607 views