editor's blog
Subscribe Now

Inorganic n-Type Thin-Film Transistors

We’ve seen before that organic approaches to transistors have focused on p-type transistors. While n-type materials have become more available, organic CMOS still isn’t widespread.

In an ISSCC paper, imec made reference to an inorganic thin-film transistor (TFT) that makes use of metal oxide (I’m tempted to call these MOxFETs). We’ll have more on that story in another posting; before getting into that, however, I wanted to learn more about exactly what these MOxFETs are.

It turns out that metal-oxide TFTs have been worked on for some time, but with a couple processing variants that limited their use. Vacuum sputtering, which yields the best mobility (> 10 cm2/Vs) costs money and limits the size of the circuit; solution-based materials are more promising because they can be deposited under “ambient” conditions over a larger substrate.

But there has still been one issue: these devices had to be annealed at temperatures of 350 °C and higher, limiting the materials that could be used in the processing. So imec’s contribution was an indium-based solution that could be annealed at 250 °C. This let them deposit this stuff on flexible substrates. While not performing as well as sputtered films, they still achieved mobility over 2 cm2/Vs.

Just as n-type organic devices have left something to be desired, so metal-oxide p-type devices aren’t so great – better materials and a wider processing window are needed. But it’s possible to use the inorganic n-type with the organic p-type to build complementary circuits.

The process starts with the gate contacts and Al2O3 high-K gate at the bottom of the stack, and then lays down the metal-oxide layer, with metal over that for the source/drain contacts. The pentacene organic film is then laid down, contacting that same metal layer from above for its source and drain.

More details can be found in their paper, “Low-temperature and scalable complementary thin-film technology based on solution-processed metal oxide n-TFTs and pentacene p-TFTs” published in Organic Electronics on 8/26 of last year.

Leave a Reply

featured blogs
Dec 9, 2018
https://youtu.be/M_d-K4yE_n4 Made on Cadence pathways (camera Sean) Monday: ICCAD and Open-Source CAD Tuesday: Clayton Christensen on the Prosperity Paradox Wednesday: Benedict's Christmas... [[ Click on the title to access the full blog on the Cadence Community site. ]...
Dec 7, 2018
That'€™s shocking! Insulation Resistance and Dielectric Withstanding Voltage are two of the qualification tests that Samtec performs in-house during part qualification testing. These tests will ensure that when a connector is used in environmental conditions at the rated wo...
Nov 28, 2018
The futuristic concept of testing for a variety of inconsistencies in blood with just a drop seemed within reach with the promising company Theranos....
Nov 14, 2018
  People of a certain age, who mindfully lived through the early microcomputer revolution during the first half of the 1970s, know about Bill Godbout. He was that guy who sent out crudely photocopied parts catalogs for all kinds of electronic components, sold from a Quon...