editor's blog
Subscribe Now

Inorganic n-Type Thin-Film Transistors

We’ve seen before that organic approaches to transistors have focused on p-type transistors. While n-type materials have become more available, organic CMOS still isn’t widespread.

In an ISSCC paper, imec made reference to an inorganic thin-film transistor (TFT) that makes use of metal oxide (I’m tempted to call these MOxFETs). We’ll have more on that story in another posting; before getting into that, however, I wanted to learn more about exactly what these MOxFETs are.

It turns out that metal-oxide TFTs have been worked on for some time, but with a couple processing variants that limited their use. Vacuum sputtering, which yields the best mobility (> 10 cm2/Vs) costs money and limits the size of the circuit; solution-based materials are more promising because they can be deposited under “ambient” conditions over a larger substrate.

But there has still been one issue: these devices had to be annealed at temperatures of 350 °C and higher, limiting the materials that could be used in the processing. So imec’s contribution was an indium-based solution that could be annealed at 250 °C. This let them deposit this stuff on flexible substrates. While not performing as well as sputtered films, they still achieved mobility over 2 cm2/Vs.

Just as n-type organic devices have left something to be desired, so metal-oxide p-type devices aren’t so great – better materials and a wider processing window are needed. But it’s possible to use the inorganic n-type with the organic p-type to build complementary circuits.

The process starts with the gate contacts and Al2O3 high-K gate at the bottom of the stack, and then lays down the metal-oxide layer, with metal over that for the source/drain contacts. The pentacene organic film is then laid down, contacting that same metal layer from above for its source and drain.

More details can be found in their paper, “Low-temperature and scalable complementary thin-film technology based on solution-processed metal oxide n-TFTs and pentacene p-TFTs” published in Organic Electronics on 8/26 of last year.

Leave a Reply

featured blogs
Sep 23, 2020
The great canning lid shortage of 75, the great storm of 87, the great snow of 54, the great freeze of 48... will we one day be talking about the great toilet roll shortage of 2020?...
Sep 23, 2020
CadenceLIVE 2020 India, our first digital conference held on 9-10 September and what an event it was! With 75 technical paper presentations, four keynotes, a virtual exhibition area, and fun... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Sep 22, 2020
I am a child of the 80s.  I grew up when the idea of home computing was very new.  My first experience of any kind of computer was an Apple II that my Dad brought home from work. It was the only computer his company possessed, and every few weeks he would need to cr...
Sep 18, 2020
[From the last episode: We put the various pieces of a memory together to show the whole thing.] Before we finally turn our memory discussion into an AI discussion, let'€™s take on one annoying little detail that I'€™ve referred to a few times, but have kept putting off. ...

Featured Video

Latency-Optimized PAM-4 Architecture for Next-Generation PCIe

Sponsored by Synopsys

This video presentation briefly describes how DesignWare® IP for PCIe® 5.0 is minimizing risk and accelerating time to market, and what Synopsys is doing to help designers prepare for next-generation PAM-4 PCIe 6.0 designs.

Click here for more information about DesignWare IP Solutions for PCI Express

Featured Paper

The Cryptography Handbook

Sponsored by Maxim Integrated

The Cryptography Handbook is designed to be a quick study guide for a product development engineer, taking an engineering rather than theoretical approach. In this series, we start with a general overview and then define the characteristics of a secure cryptographic system. We then describe various cryptographic concepts and provide an implementation-centric explanation of physically unclonable function (PUF) technology. We hope that this approach will give the busy engineer a quick understanding of the basic concepts of cryptography and provide a relatively fast way to integrate security in his/her design.

Click here to download the whitepaper

Featured Chalk Talk

Fuses in Automotive Applications

Sponsored by Mouser Electronics and Littelfuse

Automotive applications put a high demand on fuses. With the increasing electrical content in modern vehicles, correct fuse specification is a critical item for safety, and standards have been slow to catch up with demands. In this episode of Chalk Talk, Amelia Dalton chats with Saad Lambaz from Littelfuse to discuss the evolution of standards for fuses in automotive use, and how to do about choosing fuses in your next design.

Click here for more information about Littelfuse Automotive & Industrial Standard Fuses