editor's blog
Subscribe Now

Inorganic n-Type Thin-Film Transistors

We’ve seen before that organic approaches to transistors have focused on p-type transistors. While n-type materials have become more available, organic CMOS still isn’t widespread.

In an ISSCC paper, imec made reference to an inorganic thin-film transistor (TFT) that makes use of metal oxide (I’m tempted to call these MOxFETs). We’ll have more on that story in another posting; before getting into that, however, I wanted to learn more about exactly what these MOxFETs are.

It turns out that metal-oxide TFTs have been worked on for some time, but with a couple processing variants that limited their use. Vacuum sputtering, which yields the best mobility (> 10 cm2/Vs) costs money and limits the size of the circuit; solution-based materials are more promising because they can be deposited under “ambient” conditions over a larger substrate.

But there has still been one issue: these devices had to be annealed at temperatures of 350 °C and higher, limiting the materials that could be used in the processing. So imec’s contribution was an indium-based solution that could be annealed at 250 °C. This let them deposit this stuff on flexible substrates. While not performing as well as sputtered films, they still achieved mobility over 2 cm2/Vs.

Just as n-type organic devices have left something to be desired, so metal-oxide p-type devices aren’t so great – better materials and a wider processing window are needed. But it’s possible to use the inorganic n-type with the organic p-type to build complementary circuits.

The process starts with the gate contacts and Al2O3 high-K gate at the bottom of the stack, and then lays down the metal-oxide layer, with metal over that for the source/drain contacts. The pentacene organic film is then laid down, contacting that same metal layer from above for its source and drain.

More details can be found in their paper, “Low-temperature and scalable complementary thin-film technology based on solution-processed metal oxide n-TFTs and pentacene p-TFTs” published in Organic Electronics on 8/26 of last year.

Leave a Reply

featured blogs
Jul 3, 2020
[From the last episode: We looked at CNNs for vision as well as other neural networks for other applications.] We'€™re going to take a quick detour into math today. For those of you that have done advanced math, this may be a review, or it might even seem to be talking down...
Jul 2, 2020
Using the bitwise operators in general -- and employing them to perform masking, bit testing, and bit setting/clearing operations in particular -- can be extremely efficacious....
Jul 2, 2020
In June, we continued to upgrade several key pieces of content across the website, including more interactive product explorers on several pages and a homepage refresh. We also made a significant update to our product pages which allows logged-in users to see customer-specifi...

Featured Video

Product Update: DesignWare® Foundation IP

Sponsored by Synopsys

Join Prasad Saggurti for an update on Synopsys’ DesignWare Foundation IP, including the world’s fastest TCAMs, widest-voltage GPIOs, I2C & I3C IOs, and LVDS IOs. Synopsys Foundation IP is silicon-proven in 7nm in more than 500,000 customer wafers, and 5nm is in development.

Click here for more information about DesignWare Foundation IP: Embedded Memories, Logic Libraries & GPIO

Featured Paper

Cryptography: Fundamentals on the Modern Approach

Sponsored by Maxim Integrated

Learn about the fundamental concepts behind modern cryptography, including how symmetric and asymmetric keys work to achieve confidentiality, identification and authentication, integrity, and non-repudiation.

Click here to download the whitepaper

Featured Chalk Talk

Prototyping Billion-Gate Designs with Protium X1 Enterprise Prototyping System

Sponsored by Cadence Design Systems

FPGA-based Prototyping certainly isn’t new. And our needs for early firmware and software development, memory modeling and advanced data capture haven’t gotten any better, if anything - they have gotten worse. Hi, I’m Amelia Dalton - host of Chalk Talk. Today my Juergen Jaeger from Cadence Design Systems and I are talking about the next generation of FPGA-based prototyping and how the first Scalable, Data Center-Optimized Enterprise Prototyping System can get your system design up and running faster than ever before.

Click here for more information about Protium X1 Enterprise Prototyping Platform