feature article
Subscribe Now

You Can’t Touch This: New Sensor Edition

Startup UltraSense uses Ultrasound to Replace Conventional Touch Sensors

“And he that strives to touch the stars oft stumbles at a straw.” – Edmund Spenser

Touch-screen interfaces are cool and sexy and very much de son temps. At first, they were novel and hard to build. Then, chipmakers made it easy by producing lots of different touch solutions. Now, they’re getting hard again. 

The problem is space. And 5G antennas. And metal. And aesthetics. Cellphones are really skinny, covered in metal, full of holes, and filled with RF broadcasters. Trouble is, millimeter wave antennas don’t like to be behind metal, so you put them under glass, which isn’t as bendy as aluminum. And external switches and headphone jacks are so last century, so you plug all the metal holes, too. 

Over in the white goods aisle, refrigerators, ranges, and cooktops are really big and covered in stainless steel, glass, enameled metal, or ceramic depending on local design tastes. They all have touch interfaces, too, but with different ones for each different material. It’s a nuisance, but who ever said being beautiful was easy? 

Turns out, you can solve all these First World Problems by rethinking your touch-interface technology. Instead of using capacitive or piezoelectric sensing, go ultrasound. Ultrasound doesn’t care what material you’re using, how thick it is, how conductive it is, how it flexes, how it’s shaped, or how little space you might have. In fact, ultrasound just don’t care much at all. 

That material agnosticism is very handy when you’re making a variety of different interfaces for different products. It works through any reasonable material of any thickness, and it doesn’t require lengthy calibration during the production process. 

UltraSense is a 20-person startup working on a single-chip commercial ultrasound sensor. Its first-generation TouchPoint chips are already sampling, and the first end-user products to incorporate the sensors are due next summer. Second-generation chips with added functionality will follow shortly thereafter. 

From a designer’s perspective, the sensors couldn’t be easier to use. The tiny, 1.4×2.4 mm package has connections for power and a serial interface. That’s it. You point the top of the chip at the front of your device and wait for data to come back. 

The sensor works by detecting changes in “acoustic impedance.” TouchPoint transmits an ultrasound beam though whatever material(s) it’s mounted to and waits for a reflection. Or, more accurately, for a change in the standard reflection. Usually, that’s an approaching finger. TouchPoint can distinguish between light and heavy finger presses, and it works through leather gloves, rain, dirt, grease, and other contaminants that confuse most other touch technologies. The one thing that does confound it is woolen mittens. At least, for now. 

TouchPoint is tuned to ignore solid materials (metal, glass, wood, etc.) and detect the big impedance mismatch of air. That means it can be used behind a stack of materials (glass over metal, for example) so long as there are no air gaps in the stack. It’s also how TouchPoint distinguishes between firm and gentle finger presses: it senses the amount of air in the user’s fingerprint. A lot of air (relatively speaking) means a light press; less air means a squished finger and a firmer press. Loosely woven textiles – e.g., knitted mittens – contain a lot of air and confuse the sensor. So maybe it’s not the right technology for snowmobiles, but, apart from that, it’s nearly universal. 

The sensor chip itself contains UltraSense’s proprietary MEMS transducer, an unnamed MCU, nonvolatile memory, voltage regulators, and various analog circuitry. The company supplies firmware for different materials and GUI activities. For example, it can distinguish between single, double, and multiple taps, tap-and-hold, and slider actions.  

What TouchPoint can’t do is replace a large trackpad. Its ultrasound transducer has a very narrow field of view, which is great for closely spaced virtual buttons but not for tracking large-scale motions like tracing words or sketching patterns. It takes multiple TouchPoint chips in a row to create a virtual slider. Making a virtual trackpad would require a grid of TouchPoint chips, which probably wouldn’t be cost effective. On the other hand, if you’re building a UI into a wooden table or behind chromed metal, you don’t have a lot of other choices. It makes sense. 

Leave a Reply

featured blogs
May 27, 2020
Could life evolve on ice worlds, ocean worlds, ocean worlds covered in ice, halo worlds that are tidally locked with their sun, and rogue worlds without a sun? If so, what sort of life might it be?...
May 26, 2020
I get pleasure from good quality things. Quality is a vague term, but, to me, it is some combination of good design for usability, functionality and aesthetics, along with reliability and durability. Some of these factors can be assessed very quickly; others take time. For ex...
May 26, 2020
#robotcombat #combatrobots #robotwars #WeWantSeason5 #WeGotSeason5 These are some of the most popular hashtags used by a growing number of global BattleBots enthusiasts. Teams from all backgrounds design, build and test robots of all sizes for one purpose in mind: Robot Comba...
May 22, 2020
[From the last episode: We looked at the complexities of cache in a multicore processor.] OK, time for a breather and for some review. We'€™ve taken quite the tour of computing, both in an IoT device (or even a laptop) and in the cloud. Here are some basic things we looked ...

Featured Video

DesignWare 112G Ethernet PHY IP JTOL & ITOL Performance

Sponsored by Synopsys

This video shows the Synopsys 112G Ethernet PHY IP in TSMC’s N7 process passing the jitter and interference tolerance test at the IEEE-specified bit error rate (BER). The IP with leading power, performance, and area is available in a range of FinFET processes for high-performance computing SoCs.

Click here for more information

Featured Paper

High-Efficiency Boost Converter Extends Wearable Medical Patch Battery Life

Sponsored by Maxim Integrated

Wearable medical devices are transforming the healthcare industry by continuously recording and transmitting the patient state of health. They must be unobstructive and last several days relying on small, disposable batteries. This design solution reviews the shortcomings of a typical power management solution for wearable medical patches and introduces a new, high-efficiency, low-quiescent boost converter that meets the specified operating life.

Click here to download the whitepaper