feature article
Subscribe Now

What Is Silicone, Anyway?

Hint: It’s Not that Stuff Inside Computer Chips

“Who do you think made the first stone spears? The Asperger guy.” — Temple Grandin

We’ve all been there. You go to visit your great-uncle Cletus in East Fishbait, Oklahoma, and he asks you about living and working in Silicone Valley. You laugh and say your job is really in Santa Clara. “Silicone Valley is in Hollywood, ha-ha.”

The joke falls flat because, like most of your relatives, he confuses silicon with silicone. It’s just a pronunciation thing, right? Regional dialect? Potato, po-tah-to.

You can’t blame him, really. Do you know the difference between a macaroon and a macaron? Both coconut cookies, right? Nope. One’s a big stack of shredded coconut and the other’s a brightly colored almond cookie with cream filling, like a pastel Oreo. (And a macron is that straight bar printed over some letters, like this: ā. And Emmanuel Macron is the president of France. Or a straight man in a bar. I get confused.)

The surest way for a tech n00b to embarrass himself in mixed company is to mention silicone chips, technology, or process nodes. Hey, I bought some of that stuff at the hardware store to fix a squeaky hinge. Can you get me a deal on some silicone grease?  

Fact is, silicon and silicone don’t have a lot in common, at least not to the casual observer. The similarities in spelling and pronunciation are misleading, like two unrelated people on opposite sides of the world who happen to bear similar homonymous names. Mr. Wynn, meet Mr. Nguyen.

To a chemist, however, the silicon/silicone thing actually does make sense. The two are related to one another, because silicone molecules contain a lot of silicon atoms. Like all chemical names, the word “silicone” was invented by its discoverers, in this case Kipping and Saunders, in 1901. It rolled off the tongue better than polydiphenylsiloxane.

While there is a lot of silicon in silicone, there’s a lot more to it than that. At its most basic, it’s a chain of alternating silicon atoms and oxygen atoms. In the classic Neils Bohr Tinkertoy model of atomic structures, this makes a nice straight chain with a lot of loose bonding sites sticking out from the sides. These sites tend to attract organic molecules (i.e., those with carbon and/or hydrogen) such as circular phenyl groups.

Depending on what side dishes you serve up with your silicon/oxygen main dish, you can get very different compounds with very different properties. Silicones can be used as either insulators or conductors, sealants or solvents, and, strangely enough, as either a lubricant or an adhesive. It’s also used for, uh… elective cosmetic surgery. The world produces something like half a million tons of silicone products every year.

There are many, many types of silicones, but only one form of silicon. Silicone is a blanket term, like plastic or cookie. Silicon, on the other hand, comes just one way. More fundamentally, silicones are manmade, whereas silicon occurs naturally as one of earth’s basic and immutable elements. Silicon is a metallic crystal, while silicones are synthetic polymers. Make sense?

Just to make things confusing, electronic components (made with silicon) are often encased in polymers (made with silicone) for waterproofing or for shock-resistance. Now who’s confused? Maybe great-uncle Cletus was right after all.

Leave a Reply

featured blogs
Oct 20, 2020
In 2020, mobile traffic has skyrocketed everywhere as our planet battles a pandemic. Samtec.com saw nearly double the mobile traffic in the first two quarters than it normally sees. While these levels have dropped off from their peaks in the spring, they have not returned to ...
Oct 20, 2020
Voltus TM IC Power Integrity Solution is a power integrity and analysis signoff solution that is integrated with the full suite of design implementation and signoff tools of Cadence to deliver the... [[ Click on the title to access the full blog on the Cadence Community site...
Oct 19, 2020
Have you ever wondered if there may another world hidden behind the facade of the one we know and love? If so, would you like to go there for a visit?...
Oct 16, 2020
[From the last episode: We put together many of the ideas we'€™ve been describing to show the basics of how in-memory compute works.] I'€™m going to take a sec for some commentary before we continue with the last few steps of in-memory compute. The whole point of this web...

featured video

Better PPA with Innovus Mixed Placer Technology – Gigaplace XL

Sponsored by Cadence Design Systems

With the increase of on-chip storage elements, it has become extremely time consuming to come up with an optimized floorplan with manual methods. Innovus Implementation’s advanced multi-objective placement technology, GigaPlace XL, provides automation to optimize at scale, concurrent placement of macros, and standard cells for multiple objectives like timing, wirelength, congestion, and power. This technology provides an innovative way to address design productivity along with design quality improvements reducing weeks of manual floorplan time down to a few hours.

Click here for more information about Innovus Implementation System

featured paper

An engineer’s guide to autonomous and collaborative industrial robots

Sponsored by Texas Instruments

As robots are becoming more commonplace in factories, it is important that they become more intelligent, autonomous, safer and efficient. All of this is enabled with precise motor control, advanced sensing technologies and processing at the edge, all with robust real-time communication. In our e-book, an engineer’s guide to industrial robots, we take an in-depth look at the key technologies used in various robotic applications.

Click here to download the e-book

Featured Chalk Talk

Nano Pulse Control Clears Issues in the Automotive and Industrial Markets

Sponsored by Mouser Electronics and ROHM Semiconductor

In EV and industrial applications, converting from high voltages on the power side to low voltages on the electronics side poses a big challenge. In order to convert big voltage drops efficiently, you need very narrow pulse widths. In this episode of Chalk Talk, Amelia Dalton chats with Satya Dixit from ROHM about new Nano Pulse Control technology that changes the game in DC to DC conversion.

More information about ROHM Semiconductor BD9V10xMUF Buck Converters