feature article
Subscribe Now

What Is Silicone, Anyway?

Hint: It’s Not that Stuff Inside Computer Chips

“Who do you think made the first stone spears? The Asperger guy.” — Temple Grandin

We’ve all been there. You go to visit your great-uncle Cletus in East Fishbait, Oklahoma, and he asks you about living and working in Silicone Valley. You laugh and say your job is really in Santa Clara. “Silicone Valley is in Hollywood, ha-ha.”

The joke falls flat because, like most of your relatives, he confuses silicon with silicone. It’s just a pronunciation thing, right? Regional dialect? Potato, po-tah-to.

You can’t blame him, really. Do you know the difference between a macaroon and a macaron? Both coconut cookies, right? Nope. One’s a big stack of shredded coconut and the other’s a brightly colored almond cookie with cream filling, like a pastel Oreo. (And a macron is that straight bar printed over some letters, like this: ā. And Emmanuel Macron is the president of France. Or a straight man in a bar. I get confused.)

The surest way for a tech n00b to embarrass himself in mixed company is to mention silicone chips, technology, or process nodes. Hey, I bought some of that stuff at the hardware store to fix a squeaky hinge. Can you get me a deal on some silicone grease?  

Fact is, silicon and silicone don’t have a lot in common, at least not to the casual observer. The similarities in spelling and pronunciation are misleading, like two unrelated people on opposite sides of the world who happen to bear similar homonymous names. Mr. Wynn, meet Mr. Nguyen.

To a chemist, however, the silicon/silicone thing actually does make sense. The two are related to one another, because silicone molecules contain a lot of silicon atoms. Like all chemical names, the word “silicone” was invented by its discoverers, in this case Kipping and Saunders, in 1901. It rolled off the tongue better than polydiphenylsiloxane.

While there is a lot of silicon in silicone, there’s a lot more to it than that. At its most basic, it’s a chain of alternating silicon atoms and oxygen atoms. In the classic Neils Bohr Tinkertoy model of atomic structures, this makes a nice straight chain with a lot of loose bonding sites sticking out from the sides. These sites tend to attract organic molecules (i.e., those with carbon and/or hydrogen) such as circular phenyl groups.

Depending on what side dishes you serve up with your silicon/oxygen main dish, you can get very different compounds with very different properties. Silicones can be used as either insulators or conductors, sealants or solvents, and, strangely enough, as either a lubricant or an adhesive. It’s also used for, uh… elective cosmetic surgery. The world produces something like half a million tons of silicone products every year.

There are many, many types of silicones, but only one form of silicon. Silicone is a blanket term, like plastic or cookie. Silicon, on the other hand, comes just one way. More fundamentally, silicones are manmade, whereas silicon occurs naturally as one of earth’s basic and immutable elements. Silicon is a metallic crystal, while silicones are synthetic polymers. Make sense?

Just to make things confusing, electronic components (made with silicon) are often encased in polymers (made with silicone) for waterproofing or for shock-resistance. Now who’s confused? Maybe great-uncle Cletus was right after all.

Leave a Reply

featured blogs
Mar 31, 2023
Learn how (and why) the semiconductor industry is moving towards chiplet-enabled multi-die systems in our research piece in MIT's Technology Review Insights. The post An Industry-Wide Look at the Move Toward Multi-Die Systems appeared first on New Horizons for Chip Design....
Mar 31, 2023
The Verisium Debug platform is optimized for scalability, supporting debugging of simulation runs and emulation, where support for loading large source files and handling huge amounts of probe data is a must. Join this free Cadence Training Webinar to learn how to automate yo...
Mar 30, 2023
Are you in desperate need of a program manager to instigate a new project or rescue an existing project that is spiraling out of control?...

featured video

First CXL 2.0 IP Interoperability Demo with Compliance Tests

Sponsored by Synopsys

In this video, Sr. R&D Engineer Rehan Iqbal, will guide you through Synopsys CXL IP passing compliance tests and demonstrating our seamless interoperability with Teladyne LeCroy Z516 Exerciser. This first-of-its-kind interoperability demo is a testament to Synopsys' commitment to delivering reliable IP solutions.

Learn more about Synopsys CXL here

featured chalk talk

ADI's ISOverse
In order to move forward with innovations on the intelligent edge, we need to take a close look at isolation and how it can help foster the adoption of high voltage charging solutions and reliable and robust high speed communication. In this episode of Chalk Talk, Amelia Dalton is joined by Allison Lemus, Maurizio Granato, and Karthi Gopalan from Analog Devices and they examine benefits that isolation brings to intelligent edge applications including smart building control, the enablement of Industry 4.0, and more. They also examine how Analog Devices iCoupler® digital isolation technology can encourage innovation big and small!  
Mar 14, 2023
2,409 views