feature article
Subscribe Now

Updating the Centuries-Old On/Off Switch

Menlo Micro Reinvents the Lowly SPDT Switch

“I’m so fast that last night I turned off the light switch in my hotel room and was in bed before the room was dark.” — Muhammad Ali

In the Beginning, there were electrons. Then came wire. Then the switch. And it was good. 

At some level, wires and switches are all we need to make digital electronic systems. Submicron transistors are the switches and stacked metal layers are the wires. Progress, eh? 

But some systems need really big switches, and for those we employ mechanical relays or IGBTs or some other type of high-voltage, high-current toggle switch. Power supplies have mechanical on/off switches. The circuit breakers in your house use switches. You don’t see Dr. Frankenstein biasing the gate on a transistor, do you? 

Some things seem to be improvement-proof. It’s pretty hard to come up with a better alternative to wire or switches. What could be simpler or more reliable than a basic on/off switch? Glad you asked… 

A 35-person startup company has invented a replacement for the lowly switch. Hardly seems possible, but they’ve produced prototypes and are getting a warm reception from wireless 5G developers and telecom companies. Why telecom? Because the equipment up a pole consumes a lot of power but also has limited space. And space – that is, physical size – is the biggest thing separating this switch from its antediluvian ancestors. 

Menlo Micro is based in Irvine, California, not Menlo Park, California. (The name is a shout out to Thomas Edison’s lab in Menlo Park, New Jersey.) They call their invention the Ideal Switch. “We firmly believe [it] to be the most important technological innovation in the electronics industry since the transistor,” says CEO Russ Garcia, with no small amount of hyperbole. 

Under the hood, Menlo’s switch is a MEMS relay. Lots of MEMS relays, actually, all on one die. Each cantilevered beam carries a modest amount of current, but, if you gang enough of them together, the device can carry hundreds of volts at dozens of amps. The result is a tiny chip that functions like a big honkin’ mechanical relay. It’s far smaller than a relay, and it doesn’t require a heatsink. So, instead of a baseball-sized mechanical component, you have a tiny surface-mount chip no bigger than a capacitor. 

Menlo’s Ideal Switch is still a mechanical switch in a sense, as opposed to an IGBT or deep-junction MOSFET that switches by lowering its resistance and channeling current. Its MEMS beams move up and down to open and close a physical contact, albeit a very small one. When the beams are closed, they touch their opposite contact and current passes through directly, with almost no resistance. No resistance means no heat, which means no heatsink. 

Because MEMS devices have moving parts, the Ideal Switch requires a finite amount of time to switch, but it’s about three orders of magnitude quicker than a normal mechanical relay. Menlo says its Ideal Switch needs only a few microseconds to switch, versus a few milliseconds for a mechanical counterpart. You wouldn’t want to use it as an oscillator or as the basis for a switching power supply, but it’s more than fast enough for other applications. For safety shutoffs, for example, Menlo’s Ideal Switch could react far faster than a conventional relay. 

Solid-state switches aren’t a new idea, nor are they unique, but Menlo Micro thinks it’s found the right combination of technologies to finally replace mechanical relays. The company was founded five years ago as a spinoff from General Electric (which Edison founded). GE had been researching ways to reinvent the familiar circuit breaker by experimenting with different materials and techniques. Menlo Micro took that work and ran with it, commercializing the alloy and fabrication that proved to be the keys. 

The company is understandably shy about describing said alloy but insists that it’s compatible with standard MEMS fab lines and is non-contaminating. Menlo currently uses Silex in Sweden to fab its parts, but could just as easily port the process to other MEMS-compatible fab lines elsewhere. Like a fast food chain delivering its “secret sauce” to franchisees in unmarked tubs, Menlo Micro consigns its magic ingredient to the fab, which then follows its standard process flow. 

Unlike most relays or semiconductor switches, Ideal Switch consumes almost no power in either state, on or off. When off, it consumes exactly no power. In the on state, it needs a few nanowatts, which is somewhere around 10× to 100× less than the alternatives. Menlo says its device is rated for billions of open/close cycles, perhaps tens of billions. (Testing is ongoing.) That’s also one or two orders of magnitude greater than either the semiconductor or mechanical versions. If/when an Ideal Switch fails, it tends to fail closed, but that’s configurable at the factory, Menlo Micro says. 

The company isn’t quoting prices yet, but CEO Garcia says “price won’t be an issue” for customers looking to replace conventional relays or switches. He points to Ideal Switch’s lower manufacturing costs and fewer mask layers compared to an SOI device as rationale. If that promise holds true in production, Menlo’s Ideal Switch certainly looks like, well, an ideal replacement. Its small size alone will attract designers looking to jettison large heatsinks, mechanically wobbly assemblies, and heat-dissipation issues. Who knew you could improve something so basic? 

Leave a Reply

featured blogs
Nov 25, 2020
It constantly amazes me how there are always multiple ways of doing things. The problem is that sometimes it'€™s hard to decide which option is best....
Nov 25, 2020
[From the last episode: We looked at what it takes to generate data that can be used to train machine-learning .] We take a break from learning how IoT technology works for one of our occasional posts on how IoT technology is used. In this case, we look at trucking fleet mana...
Nov 25, 2020
It might seem simple, but database units and accuracy directly relate to the artwork generated, and it is possible to misunderstand the artwork format as it relates to the board setup. Thirty years... [[ Click on the title to access the full blog on the Cadence Community sit...
Nov 23, 2020
Readers of the Samtec blog know we are always talking about next-gen speed. Current channels rates are running at 56 Gbps PAM4. However, system designers are starting to look at 112 Gbps PAM4 data rates. Intuition would say that bleeding edge data rates like 112 Gbps PAM4 onl...

featured video

Product Update: Broad Portfolio of DesignWare IP for Mobile SoCs

Sponsored by Synopsys

Get the latest update on DesignWare IP® for mobile SoCs, including MIPI C-PHY/D-PHY, USB 3.1, and UFS, which provide the necessary throughput, bandwidth, and efficiency for today’s advanced mobile SoCs.

Click here for more information about DesignWare IP for 5G Mobile

featured paper

How semiconductor technologies have impacted modern telehealth solutions

Sponsored by Texas Instruments

Innovate technologies have given the general population unprecedented access to healthcare tools for self-monitoring and remote treatment. This paper dives into some of the newer developments of semiconductor technologies that have significantly contributed to the telehealth industry, along with design requirements for both hospital and home environment applications.

Click here to download the whitepaper

Featured Chalk Talk

Single Pair Ethernet

Sponsored by Mouser Electronics and Harting

Industry 4.0 brings serious demands on communication connections. Designers need to consider interoperability, processing, analytics, EMI reduction, field rates, communication protocols and much more. In this episode of Chalk Talk, Amelia Dalton chats with Piotr Polak and McKenzie Reed of Harting about using single-pair Ethernet for Industry 4.0.

Click here for more information about HARTING T1 Industrial Single Pair Ethernet (SPE) Products