feature article
Subscribe Now

The People’s Processor

Microsemi Rolls Out “Mi-V” RISC-V Ecosystem

The capitalist computing bourgeoisie want to enslave us all with proprietary processing architectures, but the proletariat eventually produces its own processor alternative – an ISA for and by the people, where instruction sets aren’t subject to the whim of the royalty-driven class, and where licensing fees don’t oppress the workers’ BOMs. RISC-V is that ISA – the people’s processor, the unmoving, unwavering instruction set whose implementation carries no fees or encumbrances, whose workings are left to the needs of the engineer, and whose performance isn’t controlled by or limited by the ruling class.

The RISC-V revolution won’t be televised, however. The proletariat just doesn’t have the budget for that sort of thing, so we’ll do our best to bring you the news right here. With ARM Tech Con – an annual celebration of proprietary processor IP and ecosystems – upon us, we’ll take a moment to look at one of the emerging alternatives, on the heels of Microsemi’s announcement of a new RISC-V ecosystem for the company’s FPGA offerings. Now, a for-profit company offering an “ecosystem” for an open-source ISA may seem more “Red Hat” than “Red Square,” but the benefits of an open-source processor can be realized only if there are practical ways that everyday engineers can use them in their designs.

RISC-V is is a standard open-architecture ISA under the governance of the RISC-V Foundation. RISC-V aims to provide portability between silicon platforms, so software written to run on a soft core in an FPGA, for example, could easily work in a subsequent ASIC implementation – even with a different processor implementation of the RISC-V ISA. The open source approach is intended to allow the broad community to evolve processor IP cores at a faster pace than closed ISAs. Also, since the RISC-V IP core is not encrypted, it can be examined and modified, which enables certifications not possible with closed architectures.

Microsemi has long been involved in providing soft-core processors for use in their low-power, high-reliability FPGA families (which came from Microsemi’s acquisition of Actel several years back). The company offers both RISC-V and ARM-based MCU IP – with the royalty for the ARM cores factored into the price of certain devices. RISC-V enables a more straightforward and portable approach, however, if your team is inclined to take a peek outside the normal comfort and security of the well-traveled ARM universe. The Mi-V ecosystem is designed to facilitate just that.

Microsemi says that the new Mi-V ecosystem “brings together a number of industry leaders involved in the development of RISC-V to leverage their capabilities and streamline RISC-V designs for customers.” Microsemi’s PolarFire, RTG4, SmartFusion2 and IGLOO2 field programmable gate array families all support RISC-V processor IP cores. The company’s original RISC-V core clocked in at 2.01 CoreMark and occupied about 10K LUTs. Microsemi has just announced a new, second RISC-V soft core that adds support for single-precision floating point to bolster their lineup. The floating-point version occupies 26K LUTs. There is also a super-minimal 4K LUT version on the drawing board – scheduled for release in early 2018.

Microsemi claims that at 2.01 CoreMark/MHz, their RISC-V outperforms other soft-core processors on the market, including the ARM Cortex M1, MicroBlaze, and NIOS II/EF. Performance is only a small part of the picture, though, since RISC-V could be implemented in just about any FPGA, and the other options are all either commercially licensed or completely proprietary to one FPGA vendor. Clearly the big attraction of RISC-V is its openness.

The Mi-V ecosystem includes the SoftConsole Eclipse IDE, which is common across Microsemi’s ARM and RISC-V offerings, allowing a single debug environment and easy portability of software between the two processor architectures. SoftConsole runs on Linux or Windows, and it is bundled with example projects and RTOSs. There is also a firmware catalog with fully-supported, version controlled, MISRA/Netrino-compliant drivers – complete with release notes and user guides. See, we’re getting away from that open-source stigma already.

Regarding RTOS/OS support – on the open-source side, we’ve got FreeRTOS, Huawei LiteOS, and MyNewt. If you’d rather have commercial support with the RTOS for your open-source processor, you might prefer ExpressLogic’s ThreadX, or SiLabs Micrium µC/OSIII. All of them support the Mi-V RISC-V ecosystem.

There are also some starter design examples targeted to various development boards, including Hello world printf via UART, Interrupt blinky, Touch screen Tic-tac-toe, and a Crypto processor with RISC-V – all available on Github, along with a tutorial called “getting started building a RISC-V” and a “RISC-V Hardware Abstraction Layer to port from ARM Cortex-M.” These resources should provide a good jumping-off point for getting a RISC-V implementaion up and running the first time, or for porting an application from an ARM Cortex-based implementation.

As one might expect, there are several development boards that support the Mi-V RISC-V ecosystem. Microsemi offers one for each of their FPGA families – PolarFire evaluation kit, RTG4 Development kit, and Mi-V IGLOO2 Creative Development Board from Microsemi, as well as the HiFive1 FE310 Arduino Platform from SiFive’s “Freedom Unleashed Platforms.” Each of these boards is compatible with the Mi-V ecosystem, and several more boards are reported to be on the way.

RISC-V offers a solid, viable option for design teams who want to take advantage of the portability, lack of royalties, frozen instruction set, and flexibility in the processor architecture itself. For many applications, these are attributes form a uniquely compelling proposition. Microsemi’s Mi-V brings solid commercial support to RISC-V, which may well be the final tipping point for many commercial projects. It will be interesting to watch.

featured blogs
Apr 25, 2024
Cadence's seven -year partnership with'¯ Team4Tech '¯has given our employees unique opportunities to harness the power of technology and engage in a three -month philanthropic project to improve the livelihood of communities in need. In Fall 2023, this partnership allowed C...
Apr 24, 2024
Learn about maskless electron beam lithography and see how Multibeam's industry-first e-beam semiconductor lithography system leverages Synopsys software.The post Synopsys and Multibeam Accelerate Innovation with First Production-Ready E-Beam Lithography System appeared fir...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

E-Mobility - Charging Stations & Wallboxes AC or DC Charging?
In this episode of Chalk Talk, Amelia Dalton and Andreas Nadler from Würth Elektronik investigate e-mobility charging stations and wallboxes. We take a closer look at the benefits, components, and functions of AC and DC wallboxes and charging stations. They also examine the role that DC link capacitors play in power conversion and how Würth Elektronik can help you create your next AC and DC wallbox or charging station design.
Jul 12, 2023
32,780 views