feature article
Subscribe Now

The New Age of Flex-Flex-Flex-Flex-Flex

Flexible Electronics Serves a Niche Need… For Now

“You’ve gone too far this time / And I’m dancing on the valentine” – Duran Duran

One of the weirdest demonstrations I’ve seen was from the guy at e-Ink. He was showing off his company’s flat display technology attached to a mockup Amazon Kindle reader. The back was off and all the electronic guts were hanging out: processor, RAM, display driver ICs, battery, and of course his display, connected to the rest by a thin ribbon cable.

The screen was showing a full page of black-and-white text – I think it was Moby Dick – which was clearly readable. Nice. Then he abruptly yanked the display loose, snapping the ribbon cable, broken wires dangling midair. You broke it! I remember thinking.

But the display didn’t change. At all. There was no power, no signal, no nothing, just a disconnected screen waving around loose, but you could still read the page just as clearly as before. It’s magic! Get thee back, wizard! What sinister necromancy is this?

But that’s the whole point of e-Ink’s display technology, of course. It’s mostly passive, requiring just a little bit of power to move pixels around, but none at all to maintain them. You can genuinely yank the display out of your Kindle (or similar e-reader) and it won’t know the difference.

And that’s just one of the strange technologies that was on display at the Flexible Circuits Conference in the scenic seaside town of Monterey, California. Some got weirder from there. There were companies showing off printable circuits – literally printed circuits, from a printing press – and some pitching the idea of continually color-changing cars. Some had early research projects; others had shipping products. All of them shared an attachment to nonstandard ways of producing electronic circuits that bend, flex, or twist for the good of the industry.

As nonstandard circuitry goes, e-Ink’s display is old hat. It looks like a monochrome LCD, but the underlying technology is very different. Instead of liquid crystals, it uses tiny drops of pigment encapsulated in impermeable bubbles about 10 microns in diameter. These bubbles float in a transparent gel, which can be made either liquid or semi-solid by applying a current to it. To update the display, the gel is temporarily made liquid while the individual pigment bubbles are rotated, turned, or manipulated electronically. When all the bubbles are oriented properly, the gel is then re-solidified, freezing everything in place. After that, there’s no need to refresh the display. Or even to leave it connected, for that matter.

Those characteristics make e-Ink’s displays very power-efficient, but they’re also limited. They can display only two colors, and one of them must be white. (I had assumed that the white background was merely the absence of black pigment, but that’s not the case. There is no default “background color” in e-Ink displays; it’s all pigment.) The displays are also very slow to update, which isn’t a problem for e-readers or for many commercial applications, but it’ll never replace smartphone screens or game consoles.

Down the aisle was Harper Corporation (they should publish a Harper Image catalog), a company that normally dabbles in the centuries-old business of offset printing. But “printing” to them can mean anything from letterpress to lithography. They have no problem printing with inks that just happen to be conductive. CMYK is just as good as E=I/R.

The trick, says Harper, is that “electrons don’t jump.” Printed magazines or brochures can tolerate tiny gaps in ink coverage (you’ll see lots of them if you look at an image under a magnifying glass), but printed electronics can’t. Full-color printing is all about tricking the eye by arranging tiny spots of color, but those games don’t work with active circuitry. Thus, the company has to be very careful about inks, substrates, and application methods.

On the plus side, they’re happy to print circuitry and packaging at the same time. Your typical 10-color commercial printing press can print nine colors and one conductive “color” simultaneously. Want a cereal box with built-in RFID tags? Talk to these guys.

At the pointy end of the research spectrum, the CEO of Solip Technology talked about his company’s work on protective coatings for foldable smartphones. I had figured that making flexible LCD displays would be the hard part, but crafting a hard, flexible, and transparent coating for same is no mean feat, either. I learned a lot about viscoelasticity.

Over on the printing side again, GSI Technologies’ technology is somewhere between conventional PC boards and Harper’s two-dimensional printing process. GSI can do multilayer “boards” on a number of different flexible substrates, complete with through-holes and vias. The process maxes out at about seven layers, with two conductive layers and five insulating and/or decorative layers. Printing directly onto plastic forms is a popular option.

So… who uses this stuff? Automakers, for one. GSI showed off a humble dome light as well as the air-conditioning controls from a high-end car. Printing the (admittedly simple) circuitry directly onto the inside of the plastic molding eliminates several steps in the manufacturing process, avoids pinched wires, and saves space. Touch-sensitive controls can be printed directly onto the housing instead of being added later.

It was also GSI that suggested the color-changing car. Hey, just cover the car in flexible LCD panels and print the connections between them. Coming soon to a rapper near you.

One thought on “The New Age of Flex-Flex-Flex-Flex-Flex”

Leave a Reply

featured blogs
Nov 24, 2021
The need for automatic mesh generation has never been clearer. The CFD Vision 2030 Study called most applied CFD 'onerous' and cited meshing's inability to generate complex meshes on the first... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Nov 24, 2021
I just saw an amazing video showing Mick Jagger and the Rolling Stones from 2021 mixed with Spot robot dogs from Boston Dynamics....
Nov 23, 2021
We explain clock domain crossing & common challenges faced during the ASIC design flow as chip designers scale up CDC verification for multi-billion-gate ASICs. The post Integration Challenges for Multi-Billion-Gate ASICs: Part 1 – Clock Domain Crossing appeared f...
Nov 8, 2021
Intel® FPGA Technology Day (IFTD) is a free four-day event that will be hosted virtually across the globe in North America, China, Japan, EMEA, and Asia Pacific from December 6-9, 2021. The theme of IFTD 2021 is 'Accelerating a Smart and Connected World.' This virtual event ...

featured video

Moving Natural Language Processing to the Edge with DesignWare ARC VPX Processor IP

Sponsored by Synopsys

Smart speakers and voice-controlled devices are getting better at understanding requests through NLP. This demo shows how ARC VPX DSP Processor IP moves NLP from the cloud to embedded edge devices for lower latency and excellent power efficiency.

Click here for more information about DesignWare ARC VPX DSP Processors

featured paper

3D-IC Design Challenges and Requirements

Sponsored by Cadence Design Systems

3D-ICs are expected to have a broad impact on networking, graphics, AI/ML, and high-performance computing. While there’s interest in 3D-ICs, it’s still in its early phases. Standard definitions are lacking, the supply chain ecosystem is in flux, and design, analysis, verification, and test challenges need to be resolved. Read this white paper to learn about 3D integration and packaging of multiple stacked dies, design challenges, ecosystem requirements, and needed solutions.

Click here to read more

featured chalk talk

Using Intel FPGA to Develop Video and Vision Solutions

Sponsored by Mouser Electronics and Intel

Today’s video applications require enormous amounts of compute performance on small power budgets. And, the wide variety of specifications, rates, and resolutions makes flexibility a key design requirement. In this episode of Chalk Talk, Amelia Dalton chats with Omi Oliyide of Intel about how Intel FPGAs are ideal to take on even the most challenging video and vision designs, and explain how you can get started with this exciting technology in your next project.

More information about Intel Arria® 10 GX FPGA Development Kit