feature article
Subscribe Now

SiTime Oscillator Beats on Rocks

Programmable Timing Components are More Flexible than Crystals

“What Youth deemed crystal, Age finds out was dew.” – Robert Browning

“We are in a somewhat uninteresting territory.” These are the words of Piyush Sevalia, Executive Vice President of Marketing for SiTime. You have to give the man points for honesty. 

He’s not wrong. SiTime is in a tough business, and a lot of their challenges aren’t technical, but evangelical. Piyush and his colleagues spend much of their time convincing engineers that they, SiTime, have a reason to exist. Once the customer has that “aha!” experience, however, the rest is easy. 

You see, SiTime makes a product that competes with rocks. It’s hard to improve on a rock. They’re cheap. They’re stable. They’ve been around for, oh, billions of years. And they’re plentiful. Nobody to my knowledge is predicting a global shortage of rocks, or that rock futures will skyrocket in the next market downturn. The business, as they say, is rock solid. 

Yet SiTime has found a better way. A better way to regulate time that doesn’t include crystals or the familiar crystal-controlled oscillators. They’re replacing rocks with silicon. 

Piyush anticipated my first question – “Why?” – because he’s heard it every day, from every potential customer. “What’s wrong with crystal oscillators and why would I want to replace them with one of your active, silicon devices?” This is where the evangelism starts. 

It’s not that there’s anything wrong with crystals, per se. It’s just that silicon oscillators are better, the same way that an iPod is better than a transistor radio, which is better than a Victrola, which is better than beating on a hollow log. SiTime’s oscillators offer advantages that simple crystals can’t deliver. 

Accuracy is one. SiTime’s oscillators are remarkably accurate and stable over temperature, voltage, and vibration. Crystals can’t do that. The same laws of physics that make crystals stable and predictable also make them drift a bit when their environment changes. That’s why we have the sub-genre of oven-controlled crystal oscillators (OXCOs). 

SiTime’s oscillators are also programmable. Adjustable rise time, anyone? That can be a real lifesaver when you’re dealing with sharp signal transitions and the associated RF emissions, crosstalk, or distortion. Instead of wrapping your crystal clock source in conditioning circuitry, just tell it to relax the rise time a bit. Easy. 

Need to tweak the frequency by just a hair? SiTime’s got you covered. Ethernet controllers are supposed to run off a 25-MHz clock source, but in practice many engineers have found that 25.00652 MHz works better. It’s hard to cut, lap, and polish a crystal to that frequency, and even harder to find one on the shelf at your local distributor. Since SiTime’s oscillators are adjustable, you can have any arbitrary frequency you want. 

SiTime clinches the deal by touting its short delivery time and improved availability. Traditional crystal-based oscillators have fixed characteristics (frequency, voltage, drive, tolerance, etc.), which means thousands of unique part numbers that distributors have to (try to) keep in stock. Your favorite crystal is out of stock? That’ll be six to eight weeks, please. SiTime, on the other hand, needs only a few parts to cover the whole spectrum of requirements. Its popular SiT8008, for example, goes from 1–110 MHz, in minute steps with 6 decimal places of accuracy. As of last week, the company can deliver any of its parts within 48 hours. 

Management guru Peter Drucker said, “Don’t solve problems; pursue opportunities.” His point was that customers don’t always know what they want until they see it. The first iPhone didn’t solve anybody’s problem – we all had cellphones, thanks – but it sold like hot cakes nonetheless. Refrigerators with ice dispensers on the door aren’t really necessary, but once you’ve had one you’ll never go back. SiTime is betting that once engineers try their programmable silicon oscillators, they’ll be hooked. It may finally be time to upgrade from the humble rock.

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 24, 2024
Learn about maskless electron beam lithography and see how Multibeam's industry-first e-beam semiconductor lithography system leverages Synopsys software.The post Synopsys and Multibeam Accelerate Innovation with First Production-Ready E-Beam Lithography System appeared fir...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Autonomous Mobile Robots
Sponsored by Mouser Electronics and onsemi
Robotic applications are now commonplace in a variety of segments in society and are growing in number each day. In this episode of Chalk Talk, Amelia Dalton and Alessandro Maggioni from onsemi discuss the details, functions, and benefits of autonomous mobile robots. They also examine the performance parameters of these kinds of robotic designs, the five main subsystems included in autonomous mobile robots, and how onsemi is furthering innovation in this arena.
Jan 24, 2024
13,370 views