feature article
Subscribe Now

Renesas Goes Mainstream

New ARM-Based Processors are Not Like the Others

“You just won’t believe how vastly, hugely, mind-bogglingly big it is.” – Douglas Adams, The Hitchhiker’s Guide to the Galaxy

Renesas is a big company. As a big company, they make lots of different products, chief among them microcontrollers. By some accounts, Renesas is the biggest MCU maker of them all. And yet, most Renesas MCUs seem at bit… odd. 

Renesas is like Apple in a sense, in that they do things their own way. The company has its own in-house MCU architecture – several, in fact – and its own in-house development tools. Once you’ve bought into the Renesas ecosystem, you’re a happy and productive developer. But to outside eyes, it’s a world apart. A walled garden of semiconductor delights. 

Until now. Earlier this month the company opened a small door into that garden and invited in all the programmers, engineers, and developers who’d like to taste the company’s previously forbidden fruits without also abandoning their own practices, traditions, and procedures. In short, Renesas has gone mainstream and now produces ARM-based MCUs that use normal, third-party software and tools

The new chip family is called RA, and it comes in four price/performance levels: RA2, RA4, RA6, and RA8. All of them are based on the low-end Cortex-M processor core architecture. In typical Renesas fashion, the chips are available for purchase now, not at some distant point in the future. (Well, most of them are. The high-end RA8 chips are still a few months out.) Prices range from about $2.50 to $7-ish in large quantities.  

These aren’t the first ARM processors from Renesas, or even the first Cortex-M chips. The company already makes a gaggle of Cortex-A and -R devices under the R-Car and RZ brands, and its other Cortex-M devices are sold under the confusing Renesas Synergy name. That’s not even counting the company’s many proprietary MCU product lines, like the RX, RL78, V850, SuperH, M32R, M16C, R32C, and on and on… Hey, it’s a big company, and it inherited the MCU lines of Hitachi, NEC, and Mitsubishi. 

The entry-level RA2 devices use ARM’s Cortex-M23 core, while all three upper tiers rely on the Cortex-M4. Clock frequencies are mostly in the double digits, with RA6 devices eking out 120 MHz. The forthcoming dual-core RA8 devices should hit 200 MHz. Those are satisfactory numbers for low-cost microcontrollers, and on par with STMicroelectronics’s STM32F4 family or Microchip’s SAM4 products, both also based on Cortex-M4. Fact is, the M4 core just isn’t fast. The current record holder in the Cortex-M class is NXP’s upcoming RT1170 at a startling 1 GHz, although that’s really a Cortex-M7 with an M4 along for the wild ride. 

All the new and upcoming RA devices sport the usual assortment of MCU accoutrements, starting with flash memory (256KB to 2MB), SRAM (64KB to 1 MB), A/D and D/A, timers, USB, CAN, I2C, and capacitive touch sensing. Renesas also makes a big deal about the chips’ hardware security features, which are de rigueur for microcontrollers these days. The security block includes a true random-number generator (TRNG), secure key storage, hash and symmetric encryption acceleration, and, in some devices, expanded asymmetric acceleration. 

What they don’t have is ARM’s TrustZone security block, for the simple reason that ARM doesn’t offer TrustZone for Cortex-M4. TrustZone is compatible with the Cortex-M23 core inside the RA2 line, but Renesas chose to forego that option, thinking it wouldn’t be appropriate for a low-end MCU. Thus, only the RA8 products will get TrustZone. 

It’s possible that some RA8 chips might also include custom instructions, since that’s now a feature available to Cortex-M33 designers. However, ARM won’t start delivering customizable versions of its Cortex-M33 core to licensees until next year – about the same time the first RA8 chips are due – so it’s obviously too late for Renesas to include that feature in its first wave of devices. But future RA8s might come with some Renesas-only tweaks. 

For a company already awash in MCU product families, including a full range of ARM-based chips, the RA might seem a bit superfluous and unnecessary. What does the RA series add that the others don’t? It’s not the pricing, the processor, the process technology, or the performance. Those bases are all covered. It’s not even a unique target market; Renesas is aiming at industrial automation, metering, and appliances – just like its existing MCU families. What, then, is the point? 

Renesas says the RA moniker stands for “Renesas Advanced” but it might as well be called “really average.” But in a good way. Renesas MCUs have been un-average for a long time, and the RA family is a big step toward normalization. Instead of the walled garden, we have an open playground, a more welcoming environment for developers who’ve already invested in software and tool flows that didn’t originate inside Renesas. Now, developers can evaluate the company’s MCUs based on their inherent characteristics, on an equal footing with similar devices from ST, Microchip, TI, NXP, and others. It’s no longer a package deal; no more “Love me, love my dog.” Maybe RA really means Renesas Adapts. 

Leave a Reply

featured blogs
Dec 5, 2023
Generative AI has become a buzzword in 2023 with the explosive proliferation of ChatGPT and large language models (LLMs). This brought about a debate about which is trained on the largest number of parameters. It also expanded awareness of the broader training of models for s...
Nov 27, 2023
See how we're harnessing generative AI throughout our suite of EDA tools with Synopsys.AI Copilot, the world's first GenAI capability for chip design.The post Meet Synopsys.ai Copilot, Industry's First GenAI Capability for Chip Design appeared first on Chip Design....
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured paper

Power and Performance Analysis of FIR Filters and FFTs on Intel Agilex® 7 FPGAs

Sponsored by Intel

Learn about the Future of Intel Programmable Solutions Group at intel.com/leap. The power and performance efficiency of digital signal processing (DSP) workloads play a significant role in the evolution of modern-day technology. Compare benchmarks of finite impulse response (FIR) filters and fast Fourier transform (FFT) designs on Intel Agilex® 7 FPGAs to publicly available results from AMD’s Versal* FPGAs and artificial intelligence engines.

Read more

featured chalk talk

What are the Differences Between an Integrated ADC and a Standalone ADC?
Sponsored by Mouser Electronics and Microchip
Many designs today require some form of analog to digital conversion but how you implement an ADC into your design can make a big difference when it comes to accuracy and precision. In this episode of Chalk Talk, Iman Chalabi from Microchip and Amelia Dalton investigate the benefits of both integrated ADC solutions and standalone ADCs. They discuss the roles that internal switching noise, process technology, and design complexity play when choosing the right ADC solution for your next design.
Apr 17, 2023
27,549 views