feature article
Subscribe Now

New Nonvolatile Memory Takes Shape

FMC’s Ferroelectric Memory Looks Like a Transistor

“Time moves in one direction, memory in another.” – William Gibson

Memory is different from logic. We learn this early in our careers, especially if the job involves fabricating one or the other. Logic gates scale. Memory cells scale, too, but not the same way. In extreme cases, we even do multi-chip modules or flip chips just to keep the memory and the logic apart. Intel makes logic ICs. SK Hynix makes memory chips. Different fab processes. Different recipes. Never the twain shall meet. 

Unless… 

What if I told you that logic and memory were the same thing? And not just in the sense that a flip-flop is a one-bit “memory” for as long as the power stays on. I mean a nonvolatile memory that’s built on a logic process, right alongside the rest of the logic. Out of transistors, not specialized memory cells. A nonvolatile CMOS transistor. 

That’s the promise of Ferroelectric Memory Company, a German startup that has developed a nonvolatile memory technology that’s fabricated just like logic transistors, but with a special ingredient. (Hint: it’s right there in the name.) 

The company is a spinoff from the Technical University of Dresden, which acquired some of the assets of the now-defunct Qimonda, which used to be part of Infineon, which used to be part of Siemens. So, long history there. During its short life, Qimonda made DRAMs and flash memory, but strangely, the nonvolatile technology grew out of the DRAMs, not the flash. The company developed an oxide for its high-k metal gate (HKMG) process that becomes ferroelectric under certain conditions. The company filed two fundamental patents on the discovery but never commercialized it. 

That job fell to the Ferroelectric Memory Company (FMC), which was founded in 2016 after licensing the Qimonda patents and raising money from European investors. The secret ingredient is hafnium-oxide (HfO2), which is already common in both logic and memory processes. What’s new is the discovery that the material has “a previously unexpected crystal phase” that holds its oxygen atoms in one of two stable states. Furthermore, it’s easy to coax those atoms into either state by applying a small voltage. Because HfO2 is already used in semiconductor fabrication, it doesn’t contaminate the process or add dozens of bizarre new steps. 

Best of all, you don’t have to fabricate dedicated memory cells with it. You can build normal transistors that just happen to double as nonvolatile memory cells. FMC calls these FeFETs, for ferroelectric field-effect transistors. If you made nonvolatile FinFETs, you’d have to call them FeFinFETs. 

FMC says its FeFETs scale right along with normal logic transistors, so there’s no penalty for mixing your memory and your logic on the same die. You can also place FeFETs directly next to logic gates – there’s no keep-out area or boundary required – which opens up some interesting possibilities for memory placement. If the NVM doesn’t have to be segregated in large blocks, you’re free to mix it indiscriminately with your logic. 

Initial indications are that FeFETs are faster than conventional flash memories, at about 25ns for both read and write. And they use less power. A FeFET transistor is switched by applying voltage, not current, so it uses less energy than a NAND flash, and there’s no such thing as an erase cycle. 

The company’s plan is to license its technology to foundries, not to sell standalone memory chips. It’s conducting trials with two foundries so far, GlobalFoundries and “a famous Asian foundry” that it declines to name. GloFo should be ready to offer FeFETs to its customers in about two years, FMC figures. That places products in consumers’ hands in 3–4 years. That should be enough time to erase several flash drives. 

Leave a Reply

featured blogs
Sep 21, 2023
Wireless communication in workplace wearables protects and boosts the occupational safety and productivity of industrial workers and front-line teams....
Sep 26, 2023
Our new AI-powered custom design solution, Virtuoso Studio, leverages our 30 years of industry knowledge and leadership, providing innovative features, reimagined infrastructure for unrivaled productivity, and new levels of integration that stretch beyond classic design bound...
Sep 21, 2023
At Qualcomm AI Research, we are working on applications of generative modelling to embodied AI and robotics, in order to enable more capabilities in robotics....
Sep 21, 2023
Not knowing all the stuff I don't know didn't come easy. I've had to read a lot of books to get where I am....
Sep 21, 2023
See how we're accelerating the multi-die system chip design flow with partner Samsung Foundry, making it easier to meet PPA and time-to-market goals.The post Samsung Foundry and Synopsys Accelerate Multi-Die System Design appeared first on Chip Design....

featured video

TDK PowerHap Piezo Actuators for Ideal Haptic Feedback

Sponsored by TDK

The PowerHap product line features high acceleration and large forces in a very compact design, coupled with a short response time. TDK’s piezo actuators also offers good sensing functionality by using the inverse piezo effect. Typical applications for the include automotive displays, smartphones and tablet.

Click here for more information about PowerHap Piezo Actuators

featured paper

Accelerating Monte Carlo Simulations for Faster Statistical Variation Analysis, Debugging, and Signoff of Circuit Functionality

Sponsored by Cadence Design Systems

Predicting the probability of failed ICs has become difficult with aggressive process scaling and large-volume manufacturing. Learn how key EDA simulator technologies and methodologies enable fast (minimum number of simulations) and accurate high-sigma analysis.

Click to read more

featured chalk talk

Telematics, Connectivity & Infotainment Integration Made Easy
Today’s automotive designs must contend with a variety of challenges including scalability, security, software integration and the increased use of different radio technologies. In this episode of Chalk Talk, Fredrik Lonegard from u-blox, Patrick Stilwell from NXP and Amelia Dalton explore how the use of modules can help address a variety of automotive design challenges and the benefits that ublox’s JODY-W3 host-based modules can bring to your next automotive application.
Apr 4, 2023
22,065 views