feature article
Subscribe Now

MCUs For the Indecisive

TI’s Microcontroller Family Has a Bit of Everything

“Genuine poetry can communicate before it is understood.” — T. S. Eliot

The great thing about standards is that there are so many to choose from. We know we want wireless, but what kind? We want sensor interfaces, but which type? We need networking, but from whom?

Let me introduce you to a little company from Dallas that solves all those problems at once. Texas Instruments (you may have heard of them) has rolled out a whole slew of MCUs that come with just about every conceivable wired, wireless, and sensor interface known to man. Can’t make up your mind? Got an indecisive product manager? Pick a TI MCU and worry about those decisions later.

TI has always offered a lot of options. The company’s product portfolio resembles a Sears & Roebuck catalog from the 1890s. Pages and pages of MCUs, sensors, amplifiers, and converters have been keeping EEs happy for generations. But that doesn’t mean they’re nostalgically mired in the past. Nosiree, everything’s up to date in the Big D. Witness the new MSP430, C2000, and Sitara processors now rolling off the fab lines. What all these disparate devices have in common is a flexible attitude toward networking, either amongst themselves or with physical devices. What we have here is an ability to communicate.

On the wired side, TI’s new chips support ProfiBus, ProfiNet, EtherCAT, Sercos, BiSS, TSN, and a handful of others you’ve never heard of. Over in the wireless realm, we see old favorites like Wi-Fi and Bluetooth, combined with relative newcomers like Thread, ZigBee, and TI’s own descriptively, if somewhat unimaginatively, named “sub-1GHz” protocol.

These new MCUs all fall under the “SimpleLink” brand name, although individual chips belong to their own specific product families as well (e.g. MSP432). The new CC13xx parts and CC26xx parts (which are obviously twice as good) are based on Arm’s Cortex-M4 cores, puttering along at 48 MHz. Flash capacity, SRAM, I/O pinout, and package are negotiable, as you’d expect.

The trick to SimpleLink’s polyglot flexibility is a separate Cortex-M0 core inside the chips that manages the RF interface. TI programs the parts with whatever protocol stack is required to meet the relevant standard(s). Changing your wireless interface doesn’t necessarily mean changing the hardware. Just reprogram the part and go.

As if all that weren’t enough, you can even create your own proprietary wireless interface. It’s your chance to invent another new standard! TI’s EasyLink abstraction layer – not to be confused with SimpleLink – provides some of the rudimentary basics, atop which you can build your own protocol stack.

Now that you’ve got your chips talking, you need something for them to talk about. TI also took the wraps off a new batch of wireless sensors in its new mmWave product line. The five new mmWave chips are position, angle, and motion sensors operating in a broad spectrum between 30 GHz and 300 GHz (hence the mmWave name). The new chips are said to be accurate down to 100 microns, which is more than enough for most industrial or automotive applications. Short wavelengths (high frequencies) are nice because they provide a high degree of accuracy and antennas are small. But they also have a hard time penetrating any kind of material (walls, plants, raindrops). Their high sensitivity often means they need to be mounted very solidly or be well compensated for movement. But that’s what MCUs are for.

featured blogs
Sep 26, 2022
Most engineers are of the view that all mesh generators use an underlying geometry that is discrete in nature, but in fact, Fidelity Pointwise can import and mesh both analytic and discrete geometry. Analytic geometry defines curves and surfaces with mathematical functions. T...
Sep 22, 2022
On Monday 26 September 2022, Earth and Jupiter will be only 365 million miles apart, which is around half of their worst-case separation....
Sep 22, 2022
Learn how to design safe and stylish interior and exterior automotive lighting systems with a look at important lighting categories and lighting design tools. The post How to Design Safe, Appealing, Functional Automotive Lighting Systems appeared first on From Silicon To Sof...

featured video

Embracing Photonics and Fiber Optics in Aerospace and Defense Applications

Sponsored by Synopsys

We sat down with Jigesh Patel, Technical Marketing Manager of Photonic Solutions at Synopsys, to learn the challenges and benefits of using photonics in Aerospace and Defense systems.

Read the Interview online

featured paper

Algorithm Verification with FPGAs and ASICs

Sponsored by MathWorks

Developing new FPGA and ASIC designs involves implementing new algorithms, which presents challenges for verification for algorithm developers, hardware designers, and verification engineers. This eBook explores different aspects of hardware design verification and how you can use MATLAB and Simulink to reduce development effort and improve the quality of end products.

Click here to read more

featured chalk talk

Solar Cells Optimized for Indoor Applications

Sponsored by Mouser Electronics and TDK

Solar cell technology is more popular than ever before, but we have only begun to scratch the surface when it comes to new applications for photovoltaic cell technology. In this episode of Chalk Talk, Amelia Dalton chats with Chris Burket from TDK about the basics of photovoltaic cells, what sets TDK’s a-SI film solar cells away from other solar cell technology on the market today and the cool new applications that can take advantage of this powerful technology.

Click here for more information about TDK BCS Low Illumination Solar Cells