feature article
Subscribe Now

Machine Learning For a Few Dollars

Eta Compute’s ECM3532 Chip Brings Inference to the Edge

“We have to be very prissy about how we tell computers to do things.” – Richard P. Feynman

Alpha, beta, gamma, delta… something, something… lambda… uh, omega. That’s about all I remember of the Greek alphabet. College was a long time ago and I never joined a fraternity. 

The folks at Eta Compute stayed in school, though, and got smart. They know that eta is the seventh Greek letter (between zeta and theta, natch) and that machine learning (ML) is a big deal. Can you spell MCU? I knew you could. 

This week, Eta Compute rolls out its second ML-oriented MCU, the ECM3532. The new chip is an upgrade from the debut ECM3531 device, with more performance and even lower power consumption. 

Like its immediate predecessor, the ’32 is aimed at “ML at the edge,” meaning it’s a low-cost device intended to do inference locally, rather than by sending buckets of data to some cloud-based machine that does the deep thinking remotely. It’s a good idea for IoT gadgets that need to massage images, voices, gestures, or sensor data. The trick is to make the ML hardware cheap enough while keeping the power consumption low enough. Eta thinks it’s aced both criteria, with prices in the “low single digits” and power down in the milliwatt range. These guys put the µ in microamp. 

The block diagram doesn’t give away much of the magic. In fact, it looks pretty much like any average MCU, with an ARM Cortex-M3 processor core running alongside a CoolFlux DSP licensed from NXP. Those are complemented with 512KB of flash, 256KB of SRAM, 8KB of ROM, and the usual assortment of UARTs, clocks, ADCs, and general-purpose I/O pins. It could be the poster on any MCU designer’s wall. 

It’s what’s underneath that counts. Eta Compute specializes in nonstandard low-power circuit design, a technique it calls CVFS: continuous voltage and frequency scaling. It’s an upgrade from the company’s previous DIAL (delay-insensitive asynchronous logic) methodology, but with similar goals. 

Like DIAL, CVFS relies on circuit-design tricks, not exotic semiconductor fabrication technology, to achieve low power consumption. DIAL was asynchronous; that is, there was no systemwide clock forcing every gate and latch to run in lockstep. Instead, each stage of a logic chain is joined by an asynchronous handshake signal. When one latch or flip-flop does its thing, it signals completion to the next stage, and so on. Asynchronous logic has plenty of advantages over synchronous logic, but a few disadvantages, too. Overall, the Eta Compute team decided the latter outweighed the former, so they re-thought how they’d design the next-generation ECM3532. 

Both chips can run at very low threshold voltages – like 0.25V, for example – that would make a normal synchronous design very slow and hard to manage. CVFS does away with the fully asynchronous philosophy of DIAL and replaces it with a number of self-generated clocks. It’s not fully asynchronous anymore, but it’s not a traditional synchronous design, either. Eta Compute says the new technique supports higher frequencies than DIAL did, without compromising the low-frequency power savings. The chip generates its own internal voltages as well as its own clocks, so integration with outside logic isn’t a problem. The ECM3532 can optionally run in synchronous mode with an external crystal, too, if you really need it to. 

The payoff is in the power savings, and Eta Compute says the ECM3532 consumes less than 5 µA/MHz under moderate loading, or 13µA/MHz when it’s running the Coremark benchmark. With a 3.0V supply, you’re looking at under 1 mA for many edge-ML tasks, according to the company. 

So, where does the machine learning come in? Well, that’s what the DSP is for. Neither the ECM3531 nor the new ’32 have ML accelerators as such, but they do include a DSP that should ease the task. As we noted earlier, a lot of ML inference work looks a lot like DSP filtering. Both benefit from fast MAC (multiple-accumulate) hardware, loop-intensive coding, and access to lots of memory. That pretty much describes the ECM3532 in a nutshell. 

It’s not a high-end beast designed for TensorFlow coding; the ’32 is more of a flyweight ready for TinyML. Having said that, Eta Compute does offer a software translator that converts TensorFlow to C, and from there to ECM3532 binaries. That allows developers to prototype and test their ideas using TensorFlow, and then ratchet down and refine them for the MCU. 

There are plenty of MCUs with DSPs onboard, but few are aimed at the ML market. And even fewer boast such low power numbers or use Eta Compute’s patented design methodology to get there. If “ML at the edge” becomes a thing, we can all Greek out on a new chip design. 

Leave a Reply

featured blogs
May 8, 2024
Learn how artificial intelligence of things (AIoT) applications at the edge rely on TSMC's N12e manufacturing processes and specialized semiconductor IP.The post How Synopsys IP and TSMC’s N12e Process are Driving AIoT appeared first on Chip Design....
May 2, 2024
I'm envisioning what one of these pieces would look like on the wall of my office. It would look awesome!...

featured video

Why Wiwynn Energy-Optimized Data Center IT Solutions Use Cadence Optimality Explorer

Sponsored by Cadence Design Systems

In the AI era, as the signal-data rate increases, the signal integrity challenges in server designs also increase. Wiwynn provides hyperscale data centers with innovative cloud IT infrastructure, bringing the best total cost of ownership (TCO), energy, and energy-itemized IT solutions from the cloud to the edge.

Learn more about how Wiwynn is developing a new methodology for PCB designs with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Industrial Internet of Things (IIoT)
Sponsored by Mouser Electronics and Eaton
In this episode of Chalk Talk, Amelia Dalton and Mohammad Mohiuddin from Eaton explore the components, communication protocols, and sensing solutions needed for today’s growing IIoT infrastructure. They take a closer look at how Eaton's circuit protection solutions, magnetics, capacitors and terminal blocks can help you ensure the success of your next industrial internet of things design.
Jun 14, 2023
38,464 views