feature article
Subscribe Now

Lattice Launches Certus-NX

Lights-up Low-End FPGA Market

Lattice Semiconductor has a knack for finding and exploiting holes in the programmable logic market. Years ago, they gave up chest beating their way into a distant third place in the FPGA market and decided instead to concentrate on the areas that the two dominant players (Xilinx and Intel/Altera) were ignoring. In a broad sense, that meant low-end FPGAs – devices with small form factors, small price tags, and very low power consumption. In support of that strategy, they launched lines of well-focused low- and mid-range FPGAs and acquired SiliconBlue – a startup that was making extra-tiny FPGAs for high-volume applications such as smartphones and mobile devices. In an era when the other FPGA companies were touting “world’s largest” and “industry’s fastest” superlatives, Lattice differentiated themselves with “World’s Smallest FPGAs” as their marketing catch-phrase.

This strategy has, by-and-large, worked out well for Lattice, and, after surviving a wake of reorganizations, headquarters relocation, and a failed merger attempt, the company seems to have emerged with a solid strategy, a strong product portfolio, and a loyal customer base. In fact, because of the high-volume markets Lattice’s devices serve, it is very likely that they have shipped more FPGAs than any other company on the planet. 

Now, the company is launching the newest of their low-end wonders – Certus-NX, a well-conceived new family of general purpose low-end FPGAs fabricated on low-power 28nm FD-SOI technology, which brings very good performance/power characteristics (Lattice claims 4x lower power vs similar FPGAs), high reliability, high immunity to SEU events (Lattice claims 100x lower soft-error rate), and low cost. Lattice has clearly designed Certus-NX as an IO-heavy family, with a very high ratio of IO capability to core logic (Lattice says 2x more IO per mm2 vs similar FPGAs). This is a smart move on Lattice’s part, as it fits the devices nicely to a bevy of current and emerging applications – particularly in edge applications that require bridging or processing. Lattice says Certus-NX is targeting applications “from data processing in automated industrial equipment to system management in communications infrastructure.”

Certus-NX has two family members, the LFD2NX-17 and LFD2NX-40. These devices had 17K and 39K logic cells respectively, 432K and 1,512K bits of EBR embedded memory, 2,560K and 1,024K of large memory, 24 and 56 18×18 multipliers, 2 ADC blocks (12-bit, 1 MSPS), 2 and 3 GPLL, 2 SGMII CDR at up to 1.25 Gbps – to support 2 channels SGMII using HP I/O (for Gigabit Ethernet), and the larger device adds a 5 Gbps PCIe Gen2 hard IP block. Depending on package selection, the devices have up to 192 total programmable IO. Packages are as small as 6x6mm, with ball-pitch options of 0.5mm and 0.8mm.

Lattice says Certus-NX is “Instant-on” (we might say “almost-instant-on,” but we are nit picking). IO configures in 3ms and the full device in as little as 8ms. IO can be configured independent of the core logic, which allows more robust system startup and in-system reconfiguration options with what Lattice calls the TransFR field upgrade feature. Because the FD-SOI process allows programmable back-bias, the devices can be configured as “low power” or “high-performance” depending on your particular application needs. Bitstream security is provided by ECDSA bitstream authentication and AES-256 encryption. 

Certus-NX is supported by Lattice’s Radiant design software, with synthesis library support available for popular logic synthesis tools. Radiant takes your synthesis tool output, combines that with constraints generated by Radiant’s floorplanning tools, and uses that to drive place and route. Radiant then extracts timing from the routing and back-annotates it into your design for timing verification. Lattice also provides a rich library of pre-engineered IP blocks that are compatible with Certus-NX, and lots of third-party synthesizable IP can be used as well.

Lattice expects Certus-NX to be used in applications such as PCIe-to-SGMII bridging, PCIe control plane bridging, co-processing by offloading compute and DSP tasks from applications processors, motor control, and more. For co-processing, the 18×18 multipliers will come in handy, and the DDR3 and LPDDR2 interfaces should give robust options for data buffering. The LUT fabric, while not enormous, is enough to potentially do lower-complexity neural net inference tasks as well. 

These devices sit at a largely uncontested spot in the FPGA market. Xilinx and Intel give little-to-no attention to their smaller-sized devices (which haven’t been updated in years). Microchip/Microsemi is going after the lower densities, but they are aiming at higher-density applications than Lattice and are more focused on high-reliability applications. The closest comparisons of competing FPGAs would be Intel’s Cyclone V and Xilinx’s Artix-7 (neither of which have been updated in years). Because of the FD-SOI technology and Lattice’s architecture, Certus-NX is likely to have dramatically lower power consumption, faster reconfiguration, smaller footprint, and more robust IO, while sporting slightly lower density.

Lattice says samples of Certus-NX are already shipping (Lattice has always been more conservative than competitors, choosing not to “announce early” with new families.) Design tools are available immediately. 


Leave a Reply

featured blogs
Oct 22, 2021
Voltus TM IC Power Integrity Solution is a power integrity and analysis signoff solution that is integrated with the full suite of design implementation and signoff tools of Cadence to deliver the... [[ Click on the title to access the full blog on the Cadence Community site...
Oct 21, 2021
We share AI chip design insights from AI Hardware Summit 2021, including wafer scale AI accelerator chips, high-bandwidth memory interfaces, and custom SoCs. The post 4 Futuristic Design Takeaways from the AI Hardware Summit 2021 appeared first on From Silicon To Software....
Oct 20, 2021
I've seen a lot of things in my time, but I don't think I was ready to see a robot that can walk, fly, ride a skateboard, and balance on a slackline....
Oct 4, 2021
The latest version of Intel® Quartus® Prime software version 21.3 has been released. It introduces many new intuitive features and improvements that make it easier to design with Intel® FPGAs, including the new Intel® Agilex'„¢ FPGAs. These new features and improvements...

featured video

Imagination Uses Cadence Digital Full Flow for GPU Development

Sponsored by Cadence Design Systems

Learn how Imagination Technologies uses the latest Cadence digital design and simulation solutions to deliver leading-edge GPU technology for automotive, mobile, and data center products.

Click here to learn more about Cadence’s digital design and signoff solutions

featured paper

Why long-term consistent performance matters for relative humidity sensors

Sponsored by Texas Instruments

The open cavity sensing element included in relative humidity sensors is constantly exposed to the environment, leading to drift over time. The new relative humidity sensor, the HDC3020, offers integrated drift correction technology to reduce drift caused by environmental stress or interactions with contaminants. This article discusses the accuracy and long-term drift of humidity sensors and how these parameters impact end-equipment performance and lifetimes.

Click to read more

featured chalk talk

Accelerating Physical Verification Productivity Part Two

Sponsored by Synopsys

Physical verification of IC designs at today’s advanced process nodes requires an immense amount of processing power. But, getting your design and verification tools to take full advantage of the compute resources available can be a challenge. In this episode of Chalk Talk, Amelia Dalton chats with Manoz Palaparthi of Synopsys about dramatically improving the performance of your physical verification process. 

Click here for more information about Physical Verification using IC Validator