feature article
Subscribe Now

Creating Innovation in a Vacuum

Unique Device Technology Avoids Complicated Semiconductor Techniques

“No matter where you go, there you are.” – Buckaroo Banzai

A new venture-backed startup is developing disruptive technology that promises to upend long-cherished beliefs about electronics, semiconductors, manufacturing processes, and power consumption. It eliminates or minimizes many of the expensive and time-consuming steps used in today’s billion-dollar semiconductor fabs, while also shifting power consumption numbers by several orders of magnitude. 

Backed by Silicon Valley venture-capital firms as well as private investors, the new company promises to heat up the market while filling a perceived vacuum in device technology. 

Neutrodyne is a 42-person startup based in Wheatstone Bridge, NY, and its technology combines concepts borrowed from MEMS, particle physics, CAT scanners, and materials science. It relies on the so-called thermionic effect and uses mostly tungsten and other metals, rather than semiconductors like silicon, to work its magic. The thermionic devices are much simpler to manufacture than conventional semiconductors, which should lead to cheaper devices and more affordable end-user products once production ramps up. The company sees applications in wireless communications, medical equipment, consumer electronics (especially audio amplifiers) and, oddly, household heating. 

Neutrodyne’s devices are a radical departure from today’s components and leverage the natural tendency of electrons to migrate from one medium to another under the right conditions. If a source electrode (the cathode) is excited using Neutrodyne’s proprietary methods, electrons will transfer to the other electrode (the anode) in a predictable manner, producing a current. This can be controlled or mediated with a third electrode (the control grid) to create a functional gate, which the company calls a Triode. 

The company isn’t releasing too many details, but its method of stimulating electron flow apparently involves “augmented molecular motility” in “optimal anaerobic conditions.” The company also hasn’t released power consumption numbers but says they’re “off the charts.”

Device packaging is as unorthodox as the devices themselves, and uses a combination of polyoxybenzylmethylenglycolanhydride and borosilicate, which has the side effect of being see-through. Pinouts vary by device function, of course, but initial products have anywhere from four to 12 pins, arranged in a circle. This seems to be a hard limit, at least for now, so current devices are pin limited to fairly basic functions such as amplifiers, diodes, and demodulators. The company promises more fully integrated devices in the future, after its next round of funding. 

Neutrodyne is also planning a line of pin-compatible upgrades (just like Intel!), so the company recommends using sockets rather than soldering components directly to PC boards. This helps with future upgrades and improves maintainability. Burned out components can be rapidly replaced, a procedure the company calls hot swapping. 

Speaking of maintenance, Neutrodyne hasn’t yet fully characterized its devices, so lifespans and MTBF numbers aren’t available. Reliability testing so far has focused on the power supply and suggests that a gradual “warm up” period might be in order. An abrupt power-up creates inrush current that evidently shortens the life of the device, so the company is exploring the option of shipping large resistors or dummy “ballast” devices with each Triode. 

“Our unique, innovative, disruptive – and patented – Triodes are as easy to make as a light bulb,” says Neutrodyne CTO Dee LaForêt. “Instead of exotic and poisonous materials we use simple, natural ingredients like steel, aluminum, tungsten, and vacuum. And what’s cleaner and more renewable than a vacuum?” 

He’s not wrong. In conventional semiconductor manufacturing, cleanliness and purity are important. LaForêt says the biggest problem is, ironically, too much silicon, which degrades the electron-emitting properties of its cathodes. To combat that, Neutrodyne introduces a small amount of barium into each device to act as a “getter,” for lack of a better term. Barium absorbs oxygen and other gases, reducing the potential for contaminants and device burnout. Heating the getter makes it even more effective, a happy side effect of the Triode’s natural operating characteristics. 

Like most hardware startups, Neutrodyne offers low-cost development and evaluation kits. Each board includes four sockets for its devices, a large power supply with transformer(s), USB, PCI, and high-wattage RF interfaces. Air or water cooling is provided by the user. Pricing was unavailable at press time. 

3 thoughts on “Creating Innovation in a Vacuum”

  1. Well, we have come full circle back to triode “gate” logic. Easy to build and logic, just “string” them together.
    How about or logic and “not” gates?

Leave a Reply

featured blogs
Aug 7, 2020
HPC. FinTech. Machine Learning. Network Acceleration. These and many other emerging applications are stressing data center networks. Data center architectures evolve to ensure optimal resource utilization and allocation. PECFF (PCIe® Enclosure Compatible Form Factor) was dev...
Aug 6, 2020
Would you believe that the clever Victorians had incredibly cunning 21-segment incandescent lamp-based displays as far back as 1898?...
Aug 6, 2020
Rigid-flex sounds like something that might be a Crossfit workout-of-the-day. But it is actually a way of doing electronic design for small form factors using flexible PCBs (typically along with some... [[ Click on the title to access the full blog on the Cadence Community s...
Jul 31, 2020
[From the last episode: We looked at the notion of sparsity and how it helps with the math.] We saw before that there are three main elements in a CNN: the convolution, the pooling, and the activation . Today we focus on activation . I'€™ll start by saying that the uses of ...

featured video

Product Update: Protect IoT SoCs with DesignWare OTP NVM IP

Sponsored by Synopsys

Join Krishna Balachandran in this discussion on Synopsys DesignWare OTP NVM IP, including security, performance, power, and cost considerations. With more than 12 years of development and deployment by 500+ customers, Synopsys is the leader in antifuse-based OTP NVM IP.

Click here for more information about Synopsys DesignWare OTP NVM IP

Featured Paper

Improving Performance in High-Voltage Systems With Zero-Drift Hall-Effect Current Sensing

Sponsored by Texas Instruments

Learn how major industry trends are driving demands for isolated current sensing, and how new zero-drift Hall-effect current sensors can improve isolation and measurement drift while simplifying the design process.

Click here for more information

Featured Chalk Talk

Nano Pulse Control Clears Issues in the Automotive and Industrial Markets

Sponsored by Mouser Electronics and ROHM Semiconductor

In EV and industrial applications, converting from high voltages on the power side to low voltages on the electronics side poses a big challenge. In order to convert big voltage drops efficiently, you need very narrow pulse widths. In this episode of Chalk Talk, Amelia Dalton chats with Satya Dixit from ROHM about new Nano Pulse Control technology that changes the game in DC to DC conversion.

More information about ROHM Semiconductor BD9V10xMUF Buck Converters