feature article
Subscribe Now

Creating Innovation in a Vacuum

Unique Device Technology Avoids Complicated Semiconductor Techniques

“No matter where you go, there you are.” – Buckaroo Banzai

A new venture-backed startup is developing disruptive technology that promises to upend long-cherished beliefs about electronics, semiconductors, manufacturing processes, and power consumption. It eliminates or minimizes many of the expensive and time-consuming steps used in today’s billion-dollar semiconductor fabs, while also shifting power consumption numbers by several orders of magnitude. 

Backed by Silicon Valley venture-capital firms as well as private investors, the new company promises to heat up the market while filling a perceived vacuum in device technology. 

Neutrodyne is a 42-person startup based in Wheatstone Bridge, NY, and its technology combines concepts borrowed from MEMS, particle physics, CAT scanners, and materials science. It relies on the so-called thermionic effect and uses mostly tungsten and other metals, rather than semiconductors like silicon, to work its magic. The thermionic devices are much simpler to manufacture than conventional semiconductors, which should lead to cheaper devices and more affordable end-user products once production ramps up. The company sees applications in wireless communications, medical equipment, consumer electronics (especially audio amplifiers) and, oddly, household heating. 

Neutrodyne’s devices are a radical departure from today’s components and leverage the natural tendency of electrons to migrate from one medium to another under the right conditions. If a source electrode (the cathode) is excited using Neutrodyne’s proprietary methods, electrons will transfer to the other electrode (the anode) in a predictable manner, producing a current. This can be controlled or mediated with a third electrode (the control grid) to create a functional gate, which the company calls a Triode. 

The company isn’t releasing too many details, but its method of stimulating electron flow apparently involves “augmented molecular motility” in “optimal anaerobic conditions.” The company also hasn’t released power consumption numbers but says they’re “off the charts.”

Device packaging is as unorthodox as the devices themselves, and uses a combination of polyoxybenzylmethylenglycolanhydride and borosilicate, which has the side effect of being see-through. Pinouts vary by device function, of course, but initial products have anywhere from four to 12 pins, arranged in a circle. This seems to be a hard limit, at least for now, so current devices are pin limited to fairly basic functions such as amplifiers, diodes, and demodulators. The company promises more fully integrated devices in the future, after its next round of funding. 

Neutrodyne is also planning a line of pin-compatible upgrades (just like Intel!), so the company recommends using sockets rather than soldering components directly to PC boards. This helps with future upgrades and improves maintainability. Burned out components can be rapidly replaced, a procedure the company calls hot swapping. 

Speaking of maintenance, Neutrodyne hasn’t yet fully characterized its devices, so lifespans and MTBF numbers aren’t available. Reliability testing so far has focused on the power supply and suggests that a gradual “warm up” period might be in order. An abrupt power-up creates inrush current that evidently shortens the life of the device, so the company is exploring the option of shipping large resistors or dummy “ballast” devices with each Triode. 

“Our unique, innovative, disruptive – and patented – Triodes are as easy to make as a light bulb,” says Neutrodyne CTO Dee LaForêt. “Instead of exotic and poisonous materials we use simple, natural ingredients like steel, aluminum, tungsten, and vacuum. And what’s cleaner and more renewable than a vacuum?” 

He’s not wrong. In conventional semiconductor manufacturing, cleanliness and purity are important. LaForêt says the biggest problem is, ironically, too much silicon, which degrades the electron-emitting properties of its cathodes. To combat that, Neutrodyne introduces a small amount of barium into each device to act as a “getter,” for lack of a better term. Barium absorbs oxygen and other gases, reducing the potential for contaminants and device burnout. Heating the getter makes it even more effective, a happy side effect of the Triode’s natural operating characteristics. 

Like most hardware startups, Neutrodyne offers low-cost development and evaluation kits. Each board includes four sockets for its devices, a large power supply with transformer(s), USB, PCI, and high-wattage RF interfaces. Air or water cooling is provided by the user. Pricing was unavailable at press time. 

3 thoughts on “Creating Innovation in a Vacuum”

  1. Well, we have come full circle back to triode “gate” logic. Easy to build and logic, just “string” them together.
    How about or logic and “not” gates?

  2. A 6AS6 dual-control pentode can act as a NAND gate. Two in parallel can act as an AND-OR-INVERT gate. Power requirements are 2 to 3 watts per 6AS6.

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

USB Power Delivery: Power for Portable (and Other) Products
Sponsored by Mouser Electronics and Bel
USB Type C power delivery was created to standardize medium and higher levels of power delivery but it also can support negotiations for multiple output voltage levels and is backward compatible with previous versions of USB. In this episode of Chalk Talk, Amelia Dalton and Bruce Rose from Bel/CUI Inc. explore the benefits of USB Type C power delivery, the specific communications protocol of USB Type C power delivery, and examine why USB Type C power supplies and connectors are the way of the future for consumer electronics.
Oct 2, 2023
26,236 views