feature article
Subscribe Now

Another Fine Mesh

Silicon Labs’s Mighty Gecko Covers All the Mesh-Network Bases

“There is no shame is being ambivalent about almost everything in your life.” – Louis Theroux

Hey, kids, let’s all make something! If your STEM summer camp counselor has got you soldering instead of swimming, chances are you’re building some sort of home-automation appliance. Which means you’re probably hacking hardware, slinging code, and testing network compatibility. Well, Silicon Labs has got just the campfire kit for you. 

It’s called EFR32MG12P, but to its camp friends, it’s Mighty Gecko. It’s a nifty little microcontroller that’s readymade for wireless mesh networks in consumer gadgets. Ease of use is the name of the game here, so Mighty Gecko is just the ticket for self-starters in the IoT world. 

Mesh networks are tricky things, but they’re popular for home-automation gadgets for a few reasons. First of all, their network range is about equal to the dimensions of your average home – not too far, not too short. Mesh networks also deal well with multiple, low-bandwidth clients. And finally, they’re (supposed to be) easier than Wi-Fi or Bluetooth for your average consumer to set up and operate. 

But end-user simplicity is inversely proportional to engineering simplicity. In other words, it’s hard to make stuff idiot-proof. Plus, the home market is awash in competing networking standards, so which one do you pick? Consumers generally don’t know their Zigbee from their Z-Wave; they just buy the most brightly colored box sitting at eye level on the store shelves. So, it pays to be flexible rather than dogmatic about your networking protocol. Go with the flow and let the marketing department sort out where to sell it. 

Mighty Gecko is one of those highly integrated devices with so much stuff that the ARM Cortex-M4 processor is almost an afterthought. Specifically, it’s got the whole 2.4-GHz radio section built in, along with the smarts to manage the necessary mesh protocols. Want to run Zigbee? Mighty Gecko’s got that covered. Changed your mind and want Thread instead? Load different software and you’re there. Someone asked for Bluetooth Low Energy (BLE)? No problem there, either. If that’s all too easy for you, there’s also a separate sub-GHz radio that’ll let you define your own proprietary network if you’re feeling creative.

Naturally, there’s an evaluation board/development kit available from Silicon Labs to get you started. It comes with three sets of everything, because what’s a mesh network without a mesh? You get three mainboards and three pairs of RF interface boards, along with the usual assortment of cables, software, and documentation. There’s a lot of downloading required, and perhaps a EULA or two to click through, depending on what options you choose to install. Set aside an hour. 

Once all that’s behind you, your first three-way mesh network should be up and running. Silicon Labs provides a few demo apps that let you press a button on one of the three boards and watch it light an indicator on one of the others. Neat-o. There’s also a network-monitor app so you can eavesdrop on the airwaves to see what’s happening and, with luck, debug your own code when the time comes. 

Mighty Gecko serves two purposes in the home-automation market. It’s a time-to-market play and it enables (indeed, it encourages) network neutrality. Mesh networks look simple on the surface, but they’re fiddly to build from scratch. Like any network, they require adherence to the standards to be interoperable with other vendors’ products, and that’s tough to do when you’re doing it for the first time. Leveraging readymade protocol software makes sense in this case, especially for a low-differentiation feature like a network connection. Save the creativity for the user interface. 

Something I hadn’t considered before is the effect of battery power on meshed devices. Mesh networks happily support battery-powered devices, but they require some special handling. By design, mesh networks can “hop” data packets from one device to the next until they reach their destination, and this can sometimes follow a circuitous route. That means intermediate devices (nodes) need to be awake and alert in order to receive and forward packets. You can’t just go to sleep and ignore the radio traffic. Your meshed device is always on call, even if it’s not doing anything. That makes battery conservation trickier than with conventional star topologies. 

Picking up a portable device and moving it around can also upset the mesh topology. Nearby nodes depend on your gadget to be where they last found it; physically relocating a node forces everyone to update their internal network maps. This is all defined by the relevant protocol specs (Zigbee, Thread, etc.) but it’s one more thing you’d be responsible for implementing without preconfigured software. 

The other thing Mighty Gecko is good for is ambivalence. Sometimes you can’t anticipate what your market is gonna want. Is it Zigbee, Thread, Bluetooth, or something else? Maybe it changes by region, or by device type. Or maybe your market research isn’t ready yet, but you’d like to get started on development. Do the hard stuff now and finalize the network protocol toward the end. See you back at the campfire in time for marshmallows. 

Leave a Reply

featured blogs
Apr 19, 2021
Cache coherency is not a new concept. Coherent architectures have existed for many generations of CPU and Interconnect designs. Verifying adherence to coherency rules in SoCs has always been one of... [[ Click on the title to access the full blog on the Cadence Community sit...
Apr 19, 2021
Samtec blog readers are used to hearing about high-performance design. However, we see an increase in intertest in power integrity (PI). PI grows more crucial with each design iteration, yet many engineers are just starting to understand PI. That raises an interesting questio...
Apr 15, 2021
Explore the history of FPGA prototyping in the SoC design/verification process and learn about HAPS-100, a new prototyping system for complex AI & HPC SoCs. The post Scaling FPGA-Based Prototyping to Meet Verification Demands of Complex SoCs appeared first on From Silic...
Apr 14, 2021
By Simon Favre If you're not using critical area analysis and design for manufacturing to… The post DFM: Still a really good thing to do! appeared first on Design with Calibre....

featured video

The Verification World We Know is About to be Revolutionized

Sponsored by Cadence Design Systems

Designs and software are growing in complexity. With verification, you need the right tool at the right time. Cadence® Palladium® Z2 emulation and Protium™ X2 prototyping dynamic duo address challenges of advanced applications from mobile to consumer and hyperscale computing. With a seamlessly integrated flow, unified debug, common interfaces, and testbench content across the systems, the dynamic duo offers rapid design migration and testing from emulation to prototyping. See them in action.

Click here for more information

featured paper

Understanding the Foundations of Quiescent Current in Linear Power Systems

Sponsored by Texas Instruments

Minimizing power consumption is an important design consideration, especially in battery-powered systems that utilize linear regulators or low-dropout regulators (LDOs). Read this new whitepaper to learn the fundamentals of IQ in linear-power systems, how to predict behavior in dropout conditions, and maintain minimal disturbance during the load transient response.

Click here to download the whitepaper

Featured Chalk Talk

Electrification of the Vehicle

Sponsored by Mouser Electronics and KEMET

The automotive technology revolution has arrived, and with it - new demands on components for automotive applications. Electric vehicles, ADAS, connected cars, and autonomous driving put fresh demands on our electrical and electronic parts. In this episode of Chalk Talk, Amelia Dalton chats with Nick Stephen of KEMET about components for the next generation of automobiles.

More information about KEMET Electronics ALA7D & ALA8D Snap-In Capacitors