feature article
Subscribe Now

The Persistence of Memory

Performance-IP’s MRO Speeds up Slow Memories

“If you optimize everything, you will always be unhappy.” — Donald Knuth

Q: When is a cache not a cache?
A: When it’s a Memory Request Optimizer.

If that sounds tautological (aren’t all caches memory-request optimizers?), then you haven’t talked to Performance-IP, a small startup in the Boston area. P-IP has a patent-pending way to speed up your system’s slow accesses to external memory by interposing some clever logic of its own.

The company’s MRO (memory request optimizer) sits between your system bus and your memory controller – like a cache. But it’s not a cache. It monitors requests for external memory reads and supplies data from its own internal storage. But it isn’t a cache. It’s smart about how, when, and where your system is accessing external memory, so it can cut latency by huge amounts, but without being a cache. Its benefits are measurable but also somewhat unpredictable. But it’s still not a cache.

The MRO logic doesn’t have traditional cache tags, so it’s not technically a cache. Instead, it has “trackers,” which serve a similar purpose but in a different manner. You can configure the number of trackers in your implementation of the MRO (it’s supplied as Verilog), so you can tune the number of trackers to balance performance against area and power. As a rule of thumb, you’ll want about 10–20 trackers, although some benchmarks show marked improvement with only four.

The MRO does store data locally, like a cache, and that’s one source of its performance-enhancement capabilities. Its local storage (P-IP calls them response buffers) is undoubtedly faster than your external RAM, so any read “hit” is a performance win.

But its trackers are also proactive, and they will prefetch data based on what they observe about your code’s locality of reference. If its internal statistic-gathering mechanism suggests that you’re accessing a certain range of addresses linearly, it’ll prefetch the upcoming data for you and store it in its response buffer. If all goes according to plan, you’ll be able to skip a couple of external memory reads entirely.

It’s this proactive prefetching that is the other source of MRO’s performance. Unlike a memory scheduler, the MRO doesn’t ever rearrange or reorganize memory accesses. Nothing ever gets delayed, or hoisted up to the front of the queue. Instead, it attempts to apply some rationality to your system’s scattered memory accesses, looking for locality where the compiler couldn’t find any. This is particularly fruitful in multicore and multi-threaded systems where each thread might be perfectly linear, but the combination of all threads/cores together makes for a haphazard melee for memory. MRO tries to stand above the fray, looking for overall patterns that can be exploited for gain.

Naturally, the slower your memory is, the better the MRO works. Or, more accurately, the greater the disparity between your processors’ performance and your memory’s performance, the greater the benefit. Not unlike a cache.

Once you’ve simulated, configured, and installed your MRO, you still have some run-time options available to you. It has three speeds: low, medium, and high (as well as “off”). The distinction is how aggressively the MRO will prefetch data that it thinks you might want. Set the mode too aggressively and you might generate more false fetches than you would see at a lower setting. It’s hard to predict which setting will work best with what software – which is why it’s programmable. Apart from these configuration settings, the MRO is entirely invisible to software. Sort of like a cache.

Performance-IP has lots of benchmark results on its website to show how MRO performs in various modes, with various test suites and various memory speeds. With things configured just right, they’ve seen 88% reductions in memory latency and 50% improvements in CPU performance.

The company doesn’t charge royalties for licensing MRO – just a single up-front licensing fee, with free support. It’s a pretty good deal, if you’ve got the cash.

Leave a Reply

featured blogs
May 24, 2022
By Melika Roshandell Today's modern electronic designs require ever more functionality and performance to meet consumer demand. These requirements make scaling traditional, flat, 2D-ICs very... ...
May 24, 2022
Nicholas Temese, who hails from Quebec, Canada, creates highly detailed handcrafted miniature scale models of classic computers from yesteryear....
May 24, 2022
By Neel Natekar Radio frequency (RF) circuitry is an essential component of many of the critical applications we now rely… ...
May 19, 2022
Learn about the AI chip design breakthroughs and case studies discussed at SNUG Silicon Valley 2022, including autonomous PPA optimization using DSO.ai. The post Key Highlights from SNUG 2022: AI Is Fast Forwarding Chip Design appeared first on From Silicon To Software....

featured video

Increasing Semiconductor Predictability in an Unpredictable World

Sponsored by Synopsys

SLM presents significant value-driven opportunities for assessing the reliability and resilience of silicon devices, from data gathered during design, manufacture, test, and in-field. Silicon data driven analytics provide new actionable insights to address the challenges posed to large scale silicon designs.

Learn More

featured paper

Reduce EV cost and improve drive range by integrating powertrain systems

Sponsored by Texas Instruments

When you can create automotive applications that do more with fewer parts, you’ll reduce both weight and cost and improve reliability. That’s the idea behind integrating electric vehicle (EV) and hybrid electric vehicle (HEV) designs.

Click to read more

featured chalk talk

Reduce Power System Needs with Multichannel Power Monitors

Sponsored by Mouser Electronics and Microchip

Power monitors can be very effective in terms of power management for a variety of designs and the use of a multichannel power monitors can not only lower your overall system power but also lower your code overhead, simplify prototyping and event detection. In this episode of Chalk Talk, Amelia Dalton chats with Mitch Polonsky from Microchip about the benefits of multichannel power monitors and how Microchip’s PAC194x and PAC195x can help you monitor your power in your next design.

Click here for more information about Microchip Technology PAC194x & PAC195x Monitors