feature article
Subscribe Now

Radio FPGA!

Xilinx Announces RFSoCs

CQ CQ CQ – Calling CQ. This is 5G calling…

We’ve all heard it. 5G is coming. Maybe not soon, but as soon as we can get all those pesky technical issues worked out. Which pesky technical issues would those be? Glad you asked. It turns out that cramming a previously unfathomable amount of bandwidth over an unprecedented number of individual connections into each and every cell tower using millimeter wavelengths and 2 dimensional massive multiple-input multiple-output (MIMO) antenna arrays – and doing all of that within acceptable power and footprint constraints – is a really tough problem. Actually, it’s a LOT of really tough problems.

As bandwidth demands have increased, we have moved the radios ever closer to the antennas. With 5G, the number of antennas is exploding – into large 2D antenna arrays – and the radios will need to be pretty much inside them. And, instead of burning a few paragraphs here on esoterica such as beamforming and the remarkable amounts of signal processing that will be required to connect exponentially more people and more things wirelessly to the internet, using RF spectrum more efficiently than we do today, let’s agree to just take it as a given that we want to do a lot of heavy-duty digital work very, very close to the RF section of our 5G systems.

How close?

Xilinx says – all in the same, monolithic chip. That’s how close.

This week, Xilinx is announcing what the company is calling the “World’s First All-Programmable RFSoC.” The new devices will be based on the same architecture as the impressive new Zynq UltraScale+ MPSoC FPGAs, but will include integrated RF-class analog technology on the same piece of silicon. Zynq’s combination of multiple, heterogeneous, conventional processors, including multi-core 64-bit applications processors, real-time processors, graphics processing units, embedded memory, FPGA fabric, DSP blocks, and high-speed IO have already made it a very likely critical component of the 5G infrastructure.

Zynq devices would obviously be cast in roles where digital acceleration of DSP functions could be closely integrated with Zynq’s embedded processing capabilities. The FPGA fabric, with its embedded hardened DSP blocks, can perform massively parallel DSP functions much faster, and (more importantly) with much less power, than conventional processors, leaving the follow-up work and overall control to embedded software running on the built-in ARM processors. But the RF section of that signal chain is still less than optimal. RF would need to go through analog conditioning, then ADCs, and then through two sets of SerDes transceivers in order to find its way into the digital realm of the Zynq device.

With the new RFSoCs, Xilinx is building the analog into the Zynq device, in the form of high-performance, high-resolution ADCs and DACs feeding directly into the Zynq interconnect fabric. For each channel, this saves a discrete ADC and DAC, plus two sets of high-speed SerDes transceivers (one on the Zynq device and one attached to the ADC/DAC). Now, the RF can be brought directly into the RFSoC, with a significant reduction in total power consumption and board footprint. The new Xilinx chips will be capable of direct RF sampling with “many channels” of 12-bit ADCs operating at up to 4GSPS with digital down-conversion and 14-bit DACs operating at up to 6.4GSPS with digital up-conversion. 

Xilinx claims that the power savings on a radio digital front-end will be in the realm of ~50% compared with a discrete implementation: 41% for a 4×4 implementation running at 100MHz, and 51% for an 8×8 implementation. Regarding footprint minimization, Xilinx claims about a 52% reduction with a 4×4 radio, and a 77% reduction on an 8×8 radio. This is assuming that the RFSoC is in a 35mm x 35mm package and the RF DACs and ADCs required for the discrete implementation are about 15mm x 15mm each. In addition to the power and footprint advantages, there are obvious potential advantages in reduced board complexity, lower manufacturing cost, and system reliability. 

Not quite as obvious is the opportunity to make more of the signal processing happen in the digital domain rather than in analog. By moving the RF portion into the SoC, we can eliminate some reliance on expensive, high-precision, temperature-sensitive RF analog components for pre-conditioning the signals before the ADC stage. Again, this reduces system cost and complexity, and it simplifies the overall design process.

Because Xilinx is putting the analog and digital parts of the RFSoC on the same slab of silicon, they had to blaze some new trails in engineering the analog portions in 16nm FinFET CMOS technology – not exactly the process of choice for mainstream RF/analog design. The upside, of course, is that some of the performance and power efficiency benefits of the FinFET process also help out on the analog side. If Xilinx did their homework right, the resulting device should be a major win in 5G system performance and simplicity. 

Of course, 5G radios are not the only potential use for RFSoCs. There is a wide spectrum of applications that can benefit from integrated RF-quality analog on an MPSoC with FPGA fabric and programmability. But, market-wise, 5G deployment is obviously a huge opportunity for Xilinx. Xilinx says they have test chips of the new RFSoC devices, the product is in the pre-release stage, and more details and specifications will be available later this year when the formal announcement is made. Meanwhile, the company is already working with key 5G development partners. Interestingly, there is no apparent competition for these new Xilinx devices in this early stage of 5G development. And, because of the importance of programmability – both hardware and software – in this application, the sockets Xilinx wins could be very hard to replace with a future ASIC or ASSP.

Platforms such as Zynq are remarkably powerful bases on which to build what amounts to flexible, programmable ASSPs. In this case, it appears that Xilinx has been able to make a modest addition to a proven product in order to create a new device with game-changing capabilities for its target application. It will be interesting to see what additional variants come out as new market and technology opportunities present themselves.

 

 

3 thoughts on “Radio FPGA!”

Leave a Reply

featured blogs
Dec 1, 2023
Why is Design for Testability (DFT) crucial for VLSI (Very Large Scale Integration) design? Keeping testability in mind when developing a chip makes it simpler to find structural flaws in the chip and make necessary design corrections before the product is shipped to users. T...
Nov 27, 2023
See how we're harnessing generative AI throughout our suite of EDA tools with Synopsys.AI Copilot, the world's first GenAI capability for chip design.The post Meet Synopsys.ai Copilot, Industry's First GenAI Capability for Chip Design appeared first on Chip Design....
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured paper

3D-IC Design Challenges and Requirements

Sponsored by Cadence Design Systems

While there is great interest in 3D-IC technology, it is still in its early phases. Standard definitions are lacking, the supply chain ecosystem is in flux, and design, analysis, verification, and test challenges need to be resolved. Read this paper to learn about design challenges, ecosystem requirements, and needed solutions. While various types of multi-die packages have been available for many years, this paper focuses on 3D integration and packaging of multiple stacked dies.

Click to read more

featured chalk talk

Electromagnetic Compatibility (EMC) Gasket Design Considerations
Electromagnetic interference can cause a variety of costly issues and can be avoided with a robust EMI shielding solution. In this episode of Chalk Talk, Amelia Dalton chats with Sam Robinson from TE Connectivity about the role that EMC gaskets play in EMI shielding, how compression can affect EMI shielding, and how TE Connectivity can help you solve your EMI shielding needs in your next design.
Aug 30, 2023
11,354 views