feature article
Subscribe Now

The PC Is Dead! Long Live the PC!

Microchip’s MEC1418 Keeps Old Interfaces Alive In New Ways

Yesterday I dusted off some old floppy disks – literally blew dust off of them – so that I could salvage their data while there was still time. Trouble was, I didn’t have a computer with a floppy drive. How to read the disks?

Ironically, the only reason I even had these old floppies lying around was because they were supposed to be my super-safe backups. Apparently sometime in the 1990s I figured that 3.5” floppy disks would be the eternal medium for safeguarding my most precious digital data, which evidently included saved games from Quake II and some 320×240 JPEGs from my first digital camera. Sheesh.

Rummaging through the clutter, I eventually found an old floppy drive unattached to any machine. I even located an appropriate ribbon cable. Next setback: my current computer’s motherboard doesn’t support a floppy controller. What? No floppy controller at all? What do you think this is – 2015?

That necessitated building a “new” old machine from a mothballed old motherboard that did support floppy drives, an old power supply with the correct connectors, an unused case, etc. About an hour later, my retro-90s PC booted (Windows XP, natch), and I once again heard the familiar grind-grind of disk-drive heads seeking back and forth. Ah, nostalgia.

Go ahead and make fun of me all you want, but backwards compatibility is a constant presence in our business. We happily obsolete our own devices at a steady pace, and sometimes we wind up pulling the rug out from under our own feet. QWERTY keyboards, TCP/IP stacks, DOS function calls, x86 compatibility – they’re all symptoms of old technology that just won’t die. Not because we haven’t developed better alternatives, but because we don’t like the better alternatives. Have you ever actually tried using one of those split, lumpy, ergonomically correct Dvorak keyboards?

There’s good business in retro-technology. Just ask any military contractor. Or Microchip, for that matter. The company that pushes out new and interesting microcontrollers almost weekly also keeps one eye on the rearview mirror, satisfying a sizable niche for backward compatibility. Case in point: the new MEC1400 family of controller chips.

You don’t often see “Microchip” and “x86” in the same sentence, much less the same datasheet. But the new MEC1400 parts combine the two very nicely. Allow me to quote directly from Microchip’s own product literature: “The MEC1400 family is a highly configurable, mixed-signal, advanced I/O controller architecture. MEC1418 incorporates a 32-bit MIPS32 M14K microcontroller core with 192 KB of closely coupled SRAM for code and data that loads from SPI flash. Designers can leverage the host SPI-flash (used for BIOS storage) for nonvolatile EC firmware storage, as a cost-effective system solution.”

So… what does this thing do, exactly? It’s a keyboard controller for PCs.

But wait – aren’t there already cheap keyboard controllers for PCs? Of course, but they – like most everything else about the PC – are based on older technologies and ad hoc pseudo-standards, all of which are getting long in the tooth and aren’t keeping pace with modern design. Most new/old PC peripheral controllers use the LPC (low pin count) bus to amalgamate controller functions, which is a lot better than the original way of doing things. But even LPC is looking a bit tired these days. Despite the name, LPC eats up a lot of pins if you’re trying to design a small device like a tablet, or even a decent laptop. It also uses 3.3V signaling, which is so 1990s. All the cool kids are using the newer eSPI (enhanced serial peripheral interface) now, don’tcha know?

The eSPI standard is Intel’s officially preferred way of replacing LPC peripherals. It uses fewer pins than LPC, it’s faster than LPC (up to 66 MHz), and it can run at either 3.3V or 1.8V. It supports both peripherals and memory, and it can even do 64-bit addressing if you’re clever. I can’t help pointing out that eSPI is both faster and more capable than the original ISA expansion bus on early PCs. You know, the one we used for memory and graphics cards.

Microchip’s new MEC1400 complements your PC-compatible chipset by providing the low-speed peripherals that any self-respecting PC needs: the keyboard, interrupt controller, UART, ACPI interfaces, DMA controller, counter/timers, PWM for fans, general-purpose I/O, and so on. What makes it special is that it does this either through the semi-old LPC interface or through the shiny-new eSPI interface, at either 3.3V or 1.8V. In short, it’s the modern way to add old peripherals. Like doing cave paintings with Adobe Illustrator.

There are six different chips in the MEC1400 series, depending on whether you want eSPI support or not, and how much SRAM you like. (There are packaging options, too, but I don’t count those.) Prices hover around $2, depending on the usual factors.

Oh, and did I mention that all six varieties are powered by their own on-chip MIPS CPU core? How’s that for a retro mind blower? Here we have the same 32-bit RISC processor that launched Silicon Graphics and MIPS Computer Systems; that famously rendered all the CGI in Jurassic Park; and that propelled the career of developer John Hennessy to the presidency of Stanford University. Yeah, that MIPS. Handling the keyboard interface for old PC clones.

But you know what the MEC1400 chips don’t have? A floppy interface.

 

9 thoughts on “The PC Is Dead! Long Live the PC!”

  1. Fun article; sometimes you don’t want to record input with 3 IR cameras and 4 voice-aware microphones just to

    Gigapixel images used to be a lot of work cataloging the disks. Nice job recovering info from 18yo. sources. Are you sure they don’t have a 9track package option in the Long Now Foundation 128 VTQFP options?

  2. Pingback: GVK BIO
  3. Pingback: www.cpns2016.com
  4. Pingback: DMPK Studies
  5. Pingback: jeux de friv
  6. Pingback: domino online

Leave a Reply

featured blogs
Dec 3, 2021
Hard to believe it's already December and 11/12ths of a year's worth of CFD is behind us. And with the holidays looming, it's uncertain how many more editions of This Week in CFD are... [[ Click on the title to access the full blog on the Cadence Community sit...
Dec 3, 2021
Explore automotive cybersecurity standards, news, and best practices through blog posts from our experts on connected vehicles, automotive SoCs, and more. The post How Do You Stay Ahead of Hackers and Build State-of-the-Art Automotive Cybersecurity? appeared first on From Si...
Dec 3, 2021
Believe it or not, I ran into John (he told me I could call him that) at a small café just a couple of evenings ago as I pen these words....
Nov 8, 2021
Intel® FPGA Technology Day (IFTD) is a free four-day event that will be hosted virtually across the globe in North America, China, Japan, EMEA, and Asia Pacific from December 6-9, 2021. The theme of IFTD 2021 is 'Accelerating a Smart and Connected World.' This virtual event ...

featured video

Design Low-Energy Audio/Voice Capability for Hearables, Wearables & Always-On Devices

Sponsored by Cadence Design Systems

Designing an always-on system that needs to conserve battery life? Need to also include hands-free voice control for your users? Watch this video to learn how you can reduce the energy consumption of devices with small batteries and provide a solution for a greener world with the Cadence® Tensilica® HiFi 1 DSP family.

More information about Cadence® Tensilica® HiFi 1 DSP family

featured paper

Utilizing the Benefits of Coupled Inductors

Sponsored by Analog Devices

In a multiphase design, coupled inductors offer many advantages compared to discrete inductors including current ripple cancellation, improved transient performance, higher inductor current saturation, smaller inductor size, output capacitance and improved overall efficiency performance. This application note highlights how the benefit of current ripple cancellation can be traded for either smaller size or higher efficiency, depending on design specifications.

Click to read more

featured chalk talk

Har-Modular for PCB Connectivity

Sponsored by Mouser Electronics and HARTING

Did you know that you can create custom modular connector solutions from off the shelf components that are robust, save PCB space and are easy to assemble? In this episode of Chalk Talk, Amelia Dalton chats with Phill Shaw and Nazario Biala from HARTING about the Har-Modular PCB connector system that gives you over a billion combination possibilities for data, signal and power.

Click here for more information about HARTING har-modular PCB Connectors