feature article
Subscribe Now

A Dendrite-Free Lithium Anode

Better Batteries Without the Fireworks

This is yet another tale from the long saga of the Quest to Build a Better Battery. We’re all waiting for the day when we can unplug everything and yet never have our batteries run dry, so, for the time being, battery technology is cool.

This tale is very specific. It’s about building a lithium-based battery with a lithium anode. Why is that a goal? Well, it always was the goal for the best performing lithium battery, but inconvenient problems like potential fires have gotten in the way. So we’ve used carbon-based anodes as a next best thing.

But according to a team from… well, from several institutions (the Joint Center for Energy Storage Research, the Pacific Northwest National Lab, and the US Army Research Lab), batteries built this way may be reaching their potential energy density limit. And so figuring out how to get a lithium anode working would extend the energy density roadmap.

This tale involves two main agents in addition to the principal anode character. The first is a solvent; the second is a salt that’s dissolved into the solvent. Together they make the electrolyte that ferries ions around as the battery is charged and discharged. The salt should contain lithium so that, when charging and discharging, the Li+ ions in the salt solution are plated onto or stripped off of the anode, depending on whether it’s charging or discharging.

The problem is that, especially with organic solvents, you’ve got some complicated chemistry going on – or at least the potential for it – in addition to this simple transfer of lithium ions. And lithium apparently plays well with only a few solvents. As a result, experiments with different alternatives have tended to bump up against one roadblock or another.

The biggest roadblocks are:

  • Dendrites. These are the evil buggers that cause fires. Lithium crystalizes out into needle-like formations, and, because the reactions happen relatively quickly (due to our desire to charge and discharge quickly using high currents), there’s not really time for a nice, stable, low-energy structure to form. So you get these random needles that are subject to breaking off or just growing really long and piercing the separator, shorting the battery out. Meaning that your laptop just resulted in an unplanned early landing at the closest possible airport.
  • Poor cycling performance. This means that, on repeated charge/discharge cycles, you get worse and worse performance – less stored charge and lower currents. Much of this appears to be due to the buildup of a layer on the anode, called the solid/electrolyte interphase (SEI) film. It gets thicker with each charging cycle, and, as it does, ions are diverted to this buildup instead of being stored, and resistance increases. The big issue here is side reactions: lithium that should end up plating for use and reuse instead gets consumed in the side reactions that create this SEI layer, and that lithium is no longer available for storing energy. And because the SEI layer isn’t very conductive, eventually the battery stops conducting because the layer is too thick.
  • Electrode corrosion. This is related to the prior one, but bears addressing separately. Apparently, after numerous cycles, the metallic anode can become porous and develop cracks. The side reactions aren’t just happening at the surface.

Propylene carbonate (PC) is a typical solvent, and LiPF6 has been a standard salt for the lithium batteries that we use today. But, together with a lithium anode, they end up creating dendrite problems. There’s another family of ether solvents, the “glymes,” that cause fewer dendrite issues, but they still degrade over repeated cycling.

An important point here is the concentration of salt in solvent as various alternative substances have been tried. Because current density peaks at 1 M* concentration, this is the concentration that’s typically been used for trying out different configurations. Some prior experiments with higher concentrations showed promise, although none of them was able to achieve dendrite-free operation with stable Coulombic efficiency (CE – essentially, how many of the ions result in stored charge, or at least that’s this poor-man’s explanation) at high currents over multiple charging cycles.

The work done by this team picked up on these leads and, for the salt, used lithium bis(fluorosulfonyl)imide – LiN(SO2F)2, or, more simply stated, LiFSI. They dissolved it in dimethoxane, or DME – an ether solvent or glyme. Together you’ll see them referred to as LiFSI-DME. And they played with the concentrations, working up from the typical 1 M concentration up to 5 M.

What they found were a couple of interesting things.

  • At 4 M, instead of dendrites forming, they got more of a nodule formation that was more compact and stable, meaning that it wasn’t going to pierce the separator.
  • In addition, the current density on the first charge was adequate but lower than that of lower concentrations. But, unlike the runs with lower concentrations, it remained stable over many, many cycles – potentially thousands of cycles.

2- and 3-M runs behaved somewhere between 1 M and 4 M, and so were not as effective. 5 M exhibited lower conductivity, so 4 M appeared to be an optimum.

According to the team’s analysis, what seems to be happening is a result of the choice of materials and the higher concentration. DME is less likely to react with Li than PC, so this reduces the rate of side reactions. There’s also weaker interaction between Li+ and FSI in solution, making the Li+ more broadly available for deposition. LiFSI is also highly soluble, making it less likely to crystalize.

Finally, because there’s more salt in concentration, there’s more Li+ available for plating, and, as it plates, there’s a higher concentration gradient from the just-depleted electrolyte near the electrode and the rest of the electrolyte, stimulating a more vigorous flow of ions towards the lithium anode. In addition, less solvent per volume means less solvent for side reactions. And, in fact, the SEI appears to have more inorganics in it, making it more conductive.

The best part is the fact that, once the SEI is established, it seems to seal off the lithium, making it unavailable for further corrosion. SEMs indicate no porosity or cracks. And so the SEI doesn’t continue to grow; once established, it remains at a stable thickness. Because it’s conductive, this means that the resistance remains low as the battery is cycled.

In the final analysis, the high concentration of lithium ions supports high currents, and the well-behaved SEI layer raises the CE to just over 98%. They were able to cycle it over 6000 times at 10 mA/cm2. They see this as an excellent platform for further battery development.

 

*I felt kind of stupid not being sure what “M” specifically meant. I knew it was related to concentration, probably having something to do with moles (which, once I got past college chemistry, has stronger association with rodents and skin formations), but that wasn’t enough. I checked around and decided that here we’re dealing with molarity, which is moles/liter. That’s as contrasted with molality, which is moles/kilogram. This distinction in terminology is probably problematic for folks whose native languages don’t discriminate well between the phonetic liquids…

 

More info:

High rate and stable cycling of lithium metal anode (behind a paywall)

10 thoughts on “A Dendrite-Free Lithium Anode”

  1. Pingback: lowongan cpns 2017
  2. Pingback: Bdsm
  3. Pingback: DMPK
  4. Pingback: agen bola online
  5. Pingback: Stix Events
  6. Pingback: coehuman Diyala

Leave a Reply

featured blogs
Mar 4, 2024
The current level of computing power is unprecedented. It has led to the development of advanced computational techniques that enable us to simulate larger systems and predict complex phenomena with greater accuracy. However, the simulation of turbomachinery systems still pos...
Mar 1, 2024
Explore standards development and functional safety requirements with Jyotika Athavale, IEEE senior member and Senior Director of Silicon Lifecycle Management.The post Q&A With Jyotika Athavale, IEEE Champion, on Advancing Standards Development Worldwide appeared first ...
Feb 28, 2024
Would it be better to ride the railways on people-powered rail bikes, or travel to the edge of space in a luxury lounge hoisted by a gigantic balloon?...

featured video

Tackling Challenges in 3DHI Microelectronics for Aerospace, Government, and Defense

Sponsored by Synopsys

Aerospace, Government, and Defense industry experts discuss the complexities of 3DHI for technological, manufacturing, & economic intricacies, as well as security, reliability, and safety challenges & solutions. Explore DARPA’s NGMM plan for the 3DHI R&D ecosystem.

Learn more about Synopsys Aerospace and Government Solutions

featured paper

Reduce 3D IC design complexity with early package assembly verification

Sponsored by Siemens Digital Industries Software

Uncover the unique challenges, along with the latest Calibre verification solutions, for 3D IC design in this new technical paper. As 2.5D and 3D ICs redefine the possibilities of semiconductor design, discover how Siemens is leading the way in verifying complex multi-dimensional systems, while shifting verification left to do so earlier in the design process.

Click here to read more

featured chalk talk

GaN Solutions Featuring EcoGaN™ and Nano Pulse Control
In this episode of Chalk Talk, Amelia Dalton and Kengo Ohmori from ROHM Semiconductor examine the details and benefits of ROHM Semiconductor’s new lineup of EcoGaN™ Power Stage ICs that can reduce the component count by 99% and the power loss of your next design by 55%. They also investigate ROHM’s Ultra-High-Speed Control IC Technology called Nano Pulse Control that maximizes the performance of GaN devices.
Oct 9, 2023
19,091 views