feature article
Subscribe Now

Choices On Top of Choices

Tensilica Fusion DSP Core Geared for Low-Power Devices

“Embedded” has a new spelling, and it’s written IoT.

Tensilica is a company that made its name as an early pioneer of tweak-it-yourself microprocessors. Actually, the name itself is a play on the words “tensile” (as in, stretchable) and “silicon,” which pretty well encapsulates the company’s unique selling proposition. Its microprocessor IP is just like any you’d get from ARM or MIPS or anyone else – except that it’s not. Instead of delivering you a prepackaged CPU core, Tensilica instead hands you a configuration tool. Pick your instruction set, pick your bus width, pick your execution resources, and the Tensilica tool will generate a custom CPU for you on the fly. It’s the whiteboard of processor product roadmaps.

EDA giant Cadence liked Tensilica so much it bought the company. Which kinda makes sense, since most EDA companies also supply IP, and Tensilica was already kind of an EDA tool company anyway. Synopsys acquired fellow configurable-processor company ARC, and Mentor Graphics acquired Accelerated Technology, Microtec Research, and others. It’s what big EDA companies do.

So now that Tensilica is a brand underneath the Cadence umbrella, it’s started to roll out new CPU core designs they have created post-acquisition. And the first of these is Fusion. Fusion is really more of a DSP than a conventional RISC CPU, and it’s intended – like everything these days – for the dreaded Internet of Things. (How long before our descendants make fun of us for using that phrase? “Gee, Gramps, did you also have the ‘Highway of Cars’ or the ‘River of Boats?’”)

Because Fusion is IoT-bound, it’s designed for efficiency, small die area, and low power. None of these characteristics are quantifiable, of course, because we’re talking about IP, not finished chips, and user-configurable IP at that. So objective measurements are mostly nonexistent.

What Fusion does do is to pare down some of the more exotic configurability options that Tensilica’s other CPU cores support, and those that wearable IoT gadgets presumably don’t need. But wait – if it’s user-configurable, couldn’t you get the same result by making those same changes to an existing Tensilica CPU? Well, yes and no. Tensilica’s configurability has limits, and the same CPU framework doesn’t work ideally in all situations. Thus, Tensilica offers separate varieties of its CPU prewired for different application areas, and then lets you tweak it from there. It’s a bit like selecting the truck, the sports car, or the sedan and then haggling over the options. Narrow down the choice first, and then fine-tune the preferences. Fusion is the choice for data-acquisition and/or wireless communication on a budget.

Being DSP-like, Fusion has a quad MAC, which can be configured (naturally) a number of different ways, from dual 24×24 to single 32×32, with variations in between. Fusion also sports a single-precision floating-point unit, with a dual-issue pipeline that can dispatch integer operations at the same time as FP ops.

Fusion is also equipped to handle crypto work, including AES-128, but it’s not done by a dedicated hardware cryptography block. Instead, the CPU processes crypto operations as part of its basic instruction set, should you choose to configure it to do so. That’s part of the fun of a user-configurable processor: you get to decide what it’s good at. Baseband bit operations are handled the same way.

The real magic of a user-configurable processor isn’t really in the hardware; it’s creating a compiler and other software tools that don’t break every time the customer changes something. Tensilica has this all figured out, of course. The compiler is auto-generated at the same time that the hardware netlist is, so they always match. And there are certain core features and instructions that you can’t remove. In other words, the configuration tool prevents you from creating a nonworking processor, or one that’s incompatible with everything else in the world. A stripped-down, bare-minimum configuration still runs real code and real operating systems. You get to add options on top of that, including your own home-grown features and instructions, if you wish. After making your design choices, you push the big red GO button, and Cadence’s big computer back at headquarters cranks out your custom processor, along with the relevant software tools. 

So now your IoT processor can be different from everyone else’s IoT processor. Even if the marketing message is probably just the same. 

Leave a Reply

featured blogs
Jul 6, 2022
With the DRAM fabrication advancing from 1x to 1y to 1z and further to 1a, 1b and 1c nodes along with the DRAM device speeds going up to 8533 for Lpddr5/8800 for DDR5, Data integrity is becoming a... ...
Jul 6, 2022
Design Automation Conference (DAC) 2022 is almost here! Explore EDA and cloud design tools, autonomous systems, AI, and more with our experts in San Francisco. The post DAC 2022: A Glimpse into the World of Design Automation from the Cloud to Cryogenic Computing appeared fir...
Jun 28, 2022
Watching this video caused me to wander off into the weeds looking at a weird and wonderful collection of wheeled implementations....

featured video

Multi-Vendor Extra Long Reach 112G SerDes Interoperability Between Synopsys and AMD

Sponsored by Synopsys

This OFC 2022 demo features Synopsys 112G Ethernet IP interoperating with AMD's 112G FPGA and 2.5m DAC, showcasing best TX and RX performance with auto negotiation and link training.

Learn More

featured paper

Addressing high-voltage design challenges with reliable and affordable isolation tech

Sponsored by Texas Instruments

Check out TI’s new white paper for an overview of galvanic isolation techniques, as well as how to improve isolated designs in electric vehicles, grid infrastructure, factory automation and motor drives.

Click to read more

featured chalk talk

Enabling the Flow of Data in the World of IoT

Sponsored by Mouser Electronics and YAGEO Group

At the heart of our growing IoT ecosystem are high performance semiconductors, but integrated circuits alone cannot make a successful IoT system. In this episode of Chalk Talk, Amelia Dalton chats with Peter Blais from KEMET and Ryan Wenzelman from Pulse about how passive components are crucial to the development of successful IoT frameworks. They take a closer look at RF, wired and power distribution aspects of IoT system development and investigate how YAGEO Group is advancing innovation in the world of IoT with a wide selection of passive components.

Click here for more information about Pulse Electronics World of IoT