feature article
Subscribe Now

Programming Below Decks

REST and the Furtherance of the Two-Class System

Do you remember that scene in Titanic where the lower-class passengers are trapped behind locked gates and left to drown? (To be fair, it’s more than one scene; it’s about half of the movie.) Their cabins are small, the viewing portholes are nonexistent (they’re probably below the waterline anyway), and there are no linen tablecloths, or polished silverware, or string quartets to be seen. It’s an us-versus-them world of transatlantic travel.

The same thing is happening with programmers. We’ve got the dinner jacket programmers who deal with abstract, high-level concepts. And then we’ve got the programmers working below decks, toiling away in the boiler rooms of the world’s hardware companies that make the world go ‘round.

The first group keeps their hands and noses clean. The second group sweats and grunts and labors on the sharp and uncomfortable underside of our daily products. As with any society, you can tell the plebes from the patricians by their language. The white-tie crowd speaks in Java or HTML5, while the hoi polloi converse using assembly language or C. Those with aspirations of moving up in the world might try learning C++, but that’s often just pretentious affectation.

I’m not saying that there’s anything inherently wrong with this. Only that it didn’t used to be this way. Class distinctions have been a recurring part of history. But it used to be that we all graduated from a single class. We were all programmers. Now we’re [__fill in the blank__] programmers.

This division was driven home to me when m’colleague Bryon Moyer pointed out how often the term “RESTful” interface programming had started to crop up in conversation. Everyone used RESTful as a desirable adjective, sort of like “paid vacation” or “free beer.”

REST, for those who are not au courant, is an acronym for representational state transfer, and it means coding a Web interface using nothing but the standard HTTP functions like GET and PUT. In a sense, you make your application look to all the world like it’s a browser.

The purported advantages of REST are that it’s scalable, since you’re relying only on functions that the whole world has already standardized; and that it’s easy to use. I mean, how hard can it be to memorize a four-word vocabulary: PUT, GET, POST, and DELETE? By definition, then, the Web itself can be called RESTful – a characterization I’m sure many nonprogrammers would dispute.

RESTful programming is also fault-tolerant, just like servers and browsers. RESTful programming calls are supposed to be idempotent and nullipotent – two words you don’t get to use very often – which basically means that you can accidentally repeat commands with no ill effects. That’s important when you’re working over a flaky Internet connection. For example, repeating a PUT command n number of times shouldn’t screw up the database you’re talking to.

That’s all swell… but it’s not programming. That’s more like snapping LEGO blocks together and calling it architecture, or finishing a paint-by-numbers velvet painting and calling it art. The programmers who rely on REST are able to do so only because the real programmers built the underlying code that makes it all work. I’m all in favor of building atop the work of others. Just don’t call it programming. The suits parading around on the upper decks of Titanic aren’t the ones making it go.

REST makes a fine knothole for cloud-based interfaces, but lately it’s being touted as a panacea; an API for all seasons. “Hey, we can code our entire application using RESTful interfaces!” Yes, and you can also run it on a CPU with exactly one instruction. That doesn’t make it a good idea.

Managers sometimes see REST as a safety net. With only four HTTP verbs and a stateless client-server model, how much trouble can your programmers get into? They’ll create simpler, safer, and more “robust” programs (whatever that means). But if that’s the manager’s major concern, perhaps he should consider removing sharp objects from the programmers’ lab. Or just hire better programmers. Supplying them with plush toys and special jackets with really long arms would make them safer, too. But not necessarily more productive.

I recently spoke with a large European industrial firm that is shifting all of its code development to Java. The company felt that standardizing on Java, rather than C or C++, would make its programmers more productive. They’d spend less time writing (and debugging) low-level code and more time thinking about high-level problems to be solved. They want their programmers to be “subject-matter experts,” not code smiths.

That approach makes sense – for them. In this specific case, with their products and their market focus, Java is perfectly capable of doing what they want. It’s enough of a “real” language that developers can implement just about any function they could need, but also abstract enough that they can gloss over some of the low-level detail their managers are hoping to avoid. If it works out as they hope, their programmers will indeed become subject-matter experts, proficient in various application niches.

But somebody, somewhere, still has to write the Java virtual machine they’re all going to rely upon. In fact, they’ll need several JVMs, because the company’s hardware is varied and nonstandard. In short, somebody will still have to do the hands-on, down-to-the-metal programming that this team will build upon.  It’s a team effort, even if you never meet the other members of the team. 

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Advantech Industrial AI Camera: Small but Mighty
Sponsored by Mouser Electronics and Advantech
Artificial intelligence equipped camera systems can be a great addition to a variety of industrial designs. In this episode of Chalk Talk, Amelia Dalton and Ryan Chan from Advantech explore the components included in an industrial AI camera system, the benefits of Advantech’s AI ICAM-500 Industrial camera series and how you can get started using these solutions in your next industrial design. 
Aug 23, 2023
29,548 views