feature article
Subscribe Now

When Smaller is Better

Lattice Introduces iCE40 UltraLite

There has been a lot of chest-beating over the years about who had the biggest, fastest FPGA in all the land. Countless press releases, PowerPoints, and posters have touted 30% better this and 4x more that. Each time a competitor leapfrogged the other, we lapped up the LUTs with renewed glee.

Lately, however, Lattice has been pushing the other end of the envelope, proudly proclaiming that they make the very smallest FPGAs. These FPGAs are so small, power-efficient, and cheap that they completely rewrite our notion of FPGAs. Literally everything you probably thought you knew about FPGAs is busted by these devices. Ask the average engineer and you’ll probably hear that FPGAs are big, expensive, power-hungry, and useful mostly for prototyping. They’ll generally continue that FPGAs would not work in mobile or battery-powered devices, aren’t useful for space-constrained designs, and would never-ever be found in a smartphone teardown. 

Nope.

Those of you taking an exploratory Sawzall to your Samsung Galaxy are likely to be sifting through the dust of some Lattice “iCE” FPGAs. Don’t worry – the FPGAs you just ground up are really inexpensive. Uh, sorry about your new smartphone, though.

What was Samsung thinking? They were probably thinking that these FPGAs are tiny, sip microwatts, cost pennies, and pack a lot of capability that comes in really handy in a mobile device. Now, Lattice has raised their game by shrinking their devices even more. The new Lattice iCE40 UltraLite is the smallest FPGA ever made – as small as 1.4 x 1.4 x 0.45mm. Don’t sneeze at your lab bench or you’ll lose it and never find it again. And, at 35?A, it will not be bleeding your batteries dry. Cost-wise, you could probably buy a couple of these things for a dollar (in volume) and maybe even get some change back. 

Of course, all that low-cost, low-power, tiny form-factor stuff is good news only if you can actually do something useful with the thing. iCE40 UltraLite is available in two sizes: 640 and 1248 LUTs. More impressive than the LUTs, however, is the list of hardened IP: three 24mA constant current sinks, one 100mA constant current sink, and one 400mA constant current sink (think driving multi-color LEDs with those guys), two programmable 12C interfaces, a 10kHz low-power oscillator, a programmable PLL, up to 56 Kb embedded block RAM, up to 26 I/O, and built-in non-volatile configuration memory.

The configuration memory setup deserves some explanation. These are actually SRAM-type FPGAs, so the configuration is accomplished via SRAM (volatile) structures. However, unlike conventional FPGAs, the configuration can be stored in a non-volatile (one-time programmable) on-chip memory. That means you don’t need any external configuration memory or circuitry. The device behaves much like a non-volatile FPGA (by configuring itself very quickly from the on-chip memory). It can be configured externally, however, so field reconfiguration could be accomplished if your application calls for that. 

Speaking of applications, what are these little fellas good for? The company says they are targeting the IoT space, particularly wearables, pedometers, always-on navigation, voice input, LED “breathing” effect, calendar alerts – anything that requires a tiny device to remain on duty to wake up the rest of the system when a big event happens, and to perform some housekeeping tasks while the rest of the system sleeps. In addition to the obvious consumer applications, there are also a wide variety of handheld industrial and medical applications where the capabilities of a tiny FPGA could come in handy.

Since a lot of the companies in these industries don’t have large teams of FPGA experts standing by (heck, many of them have never even dreamed of using an FPGA before), Lattice offers a lot of hand-holding as well as a suite of reference and demo designs. For starters, they have a finger-swipe sensor, an RGB LED controller, a pedometer, and an IR LED control application. In some cases, these demo designs could be rolled right into production use.

Lattice has established a solid presence in the consumer/mobile space with their devices. While there have been a number of FPGA companies who have gone after consumer sockets in the past, none have had the success and the focus of Lattice’s offerings of the past few years. The acquisition of SiliconBlue (which is the source of the technology for the iCE UltraLite family covered in this announcement) dovetailed nicely with Lattice’s existing ECP families and strategy – providing a portfolio that could cover a wide gamut of consumer-like applications. 

Bringing FPGA technology into green pastures brings new challenges, however. For years, the direction of FPGA tools and technology has been based on feedback from existing (and mostly expert) FPGA users. While that process provided a nice environment for the rapid evolution of FPGAs for traditional-market applications, it had the effect of making the devices a bit enigmatic for new users and new applications. Lattice has had to double down on get-started assets such as reference designs, approachable kits, demos, simplified tool flows, and design services.

The good news is that since most of the applications for these devices are high volume, Lattice is in a position where they are probably selling much larger volumes of devices to a smaller customer base. That means the company can afford to invest more in support and services for any given socket than a traditional FPGA company who is supporting droves of small-volume and prototype designs. 

Considering the enormous range of devices that are now called “FPGAs,” the term has become quite diluted. On one end, we have the devices we are describing here – costing pennies, burning microwatts of power, and delivering 640 LUTs in a package less than 1.5mm on a side. On the other end of the spectrum, we have behemoth devices costing tens of thousands of dollars, burning tens of watts, and delivering millions of LUTs in a single device. 

It almost seems like we need a new name…

13 thoughts on “When Smaller is Better”

  1. next steady jelly bean logic market migration that systems engineers use … the migration from ttl, to lsttl, to PAL’s, to GAL’s, to CPLD, to […], and finally to cheap small low voltage FPGA’s

    Now if they were actually on the shelf at Digikey or Mouser so one could actually play with them without a long lead-time.

  2. Pingback: GVK Biosciences
  3. Pingback: binaural
  4. Pingback: www.cpns2016.com
  5. Pingback: Bdsm
  6. Pingback: Festivales
  7. Pingback: ADME
  8. Pingback: Law Diyala

Leave a Reply

featured blogs
Dec 1, 2023
Why is Design for Testability (DFT) crucial for VLSI (Very Large Scale Integration) design? Keeping testability in mind when developing a chip makes it simpler to find structural flaws in the chip and make necessary design corrections before the product is shipped to users. T...
Nov 27, 2023
See how we're harnessing generative AI throughout our suite of EDA tools with Synopsys.AI Copilot, the world's first GenAI capability for chip design.The post Meet Synopsys.ai Copilot, Industry's First GenAI Capability for Chip Design appeared first on Chip Design....
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured paper

Power and Performance Analysis of FIR Filters and FFTs on Intel Agilex® 7 FPGAs

Sponsored by Intel

Learn about the Future of Intel Programmable Solutions Group at intel.com/leap. The power and performance efficiency of digital signal processing (DSP) workloads play a significant role in the evolution of modern-day technology. Compare benchmarks of finite impulse response (FIR) filters and fast Fourier transform (FFT) designs on Intel Agilex® 7 FPGAs to publicly available results from AMD’s Versal* FPGAs and artificial intelligence engines.

Read more

featured chalk talk

How IO-Link® is Enabling Smart Factory Digitization -- Analog Devices and Mouser Electronics
Safety, flexibility and sustainability are cornerstone to today’s smart factories. In this episode of Chalk Talk, Amelia Dalton and Shasta Thomas from Analog Devices discuss how Analog Device’s IO-Link is helping usher in a new era of smart factory automation. They take a closer look at the benefits that IO-Link can bring to an industrial factory environment, the biggest issues facing IO-Link sensor and master designs and how Analog Devices ??can help you with your next industrial design.
Feb 2, 2023
36,270 views